期刊文献+

S=1铁磁模型中阻挫和各向异性引起的量子相变 被引量:1

Quantum phase transition caused by the frustration and anisotropic effect in the S=1 ferromagnetic model
下载PDF
导出
摘要 利用密度矩阵重整化群(density matrix renormalization group,DMRG)方法研究近邻作用为铁磁耦合、次近邻为反铁磁耦合的一维S=1的各向异性海森堡自旋模型.计算了该系统的基态能、z轴自旋关联函数和面内自旋关联函数.结果表明:各向异性值Δ和阻挫α的相互作用使得系统基态发生相变;在低阻挫区域,Δ>1时系统为铁磁相,0<Δ<1时基态处于自旋液体相;在阻挫较大的区域,自旋关联函数随距离的增大呈现指数函数形式衰减,且具有周期振荡特征,与自旋S=1/2的结果形成鲜明的对比. By using the density matrix renormalization group (DMRG) method, the author investi- gates the diagram of the one-dimensional frustrated anisotropic ferromagnetic S= 1 Heisenberg spin model, in which the nearest neighboring interactions are anisotropic ferromagnetic and the next nea- rest neighboring exchanges are considerable anti-ferromagnetic. The ground state energy and both the in-plane and out-of-plane spin correlation functions are calculated. Apart from the ferromagnetic phase and the spin-fluid phase in the small frustration region, but in the large frustration region, it is identified that spin correlations decay with a short-range exponential law and an oscillating behav- ior. The result is different from the previous result for S=1/2.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期29-33,共5页 Journal of Yangzhou University:Natural Science Edition
基金 江苏省科技支撑计划(工业)项目(BE2009106)
关键词 密度矩阵重整化群 阻挫 各向异性 铁磁海森堡模型 自旋关联 density matrix renormalization group frustration anisotropy Heisengberg model spincorrelation function
  • 相关文献

参考文献17

  • 1HALDANE F D M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Neel state [J]. Phys Rev Lett, 1983, 50(15): 1153-1156.
  • 2DAGOTTO E, RICE T M. Surprises on the way from 1D to 2D quantum magnets: the novel ladder materials [J]. Science, 1996, 271(52497):618-623.
  • 3陆文彬,潘丽华,刘拥军.1/5掺杂反铁磁海森堡自旋链的基态[J].扬州大学学报(自然科学版),2009,12(4):26-30. 被引量:2
  • 4HASE M, KUROE H, OZAWA K, et al. Magnetic properties of Rb2Cu2Mo3O12 including a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first nearest neighbor and antiferromagnetic second-nearestneighbor exchange interactions [J]. Phys Rev B, 2004, 70(10): 104426: 1-6.
  • 5DRECHSLER S L, RICHTER J, GIPPIUS A A, et al. Helical ground state and weak ferromagnetism in the edge-shared chain cuprate NaCu2O2 [J]. Europhys Lett, 2006, 73(1) : 83-89.
  • 6ENDERLE M, MUKHERJEE C, FAK B, et al. Quantum helimagnetism of the frustrated spin-1/2 chain LiCuVO4[J]. Europhys Lett, 2005, 70(2): 237-243.
  • 7KRUG VON NIDDA H A, SVISTOV L E, EREMIN M V, et al. Anisotropic exchange in LiCuVO4 probed by ESR[J]. PhysRevB, 2002, 65(13):134445: 1-7.
  • 8VASI'EV A N, PONONARENKO L A, MANAKA H, et al. Magnetic and resonant properties of quasi-onedimensional antiferromagnet LiCuVO4[J]. Phys Rev B, 2001, 64(2): 024419: 1-5.
  • 9DMITRIEV D V, KRIVNOV V Ya. Multimagnon bound states in an easy-axis frustrated ferromagnetic spin chain [J]. Phys Rev B, 2009, 79(5): 054421:1-10.
  • 10DMITRIEV D V, KRIVNOV V Ya. Weakly anisotropic frustrated zigzag spin chain [J]. Phys Rev B, 2008, 77(2): 024401: 1-8.

二级参考文献14

  • 1王春花,陈东芳,刘拥军.掺杂对一维反铁磁海森堡自旋链性质的影响[J].扬州大学学报(自然科学版),2005,8(1):28-31. 被引量:8
  • 2MALVEZZI A L. An introduction to numerical methods in low-dimensional quantum systems [J]. Brazilian J Phys, 2003, 33(1): 55- 72.
  • 3MERMIN N D, WAGNER H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models [J]. Phys Rev Lett,1966, 17(22):1133-1136.
  • 4OKAMOTO K, TONEGAWA T, KABURAGI M. Magnetic properties of the S= 1/2 distorted diamond chain at T=0 [J]. J Phys: Condens Matter, 2003,15(35): 5979-5995.
  • 5LIEB E, MATTIS D. Ordering energy levels of interacting spin systems[J]. J Math Phys, 1962, 3(4): 749- 751.
  • 6WHITE S R. Density-matrix algorithms for quantum renormalization groups[J]. Phys Rev B, 1993, 48(14): 10345-10356.
  • 7PESCHEL I, WANG X, KAUiKE M. Density matrix renormalization., new numerical method in physics lecture notes in physics [M]. New York: Spinger, 1999: 27-66.
  • 8WHITE S R. Density matrix formulation for quantum renormalization groups [J]. Phys Rev Lett, 1992, 69(19): 2863- 2866.
  • 9BETHE H. Zur theorie der metalle Ⅰ: eigenwerte und eigenfunktionen der linearen atomkette [J]. Z Phys, 1931, 71(3/4): 205-226.
  • 10HULTHEN L. Uber das austauschproblem eines kristalles [J]. Ark Mat Astron Fys, 1938, 26A: 1-106.

共引文献1

同被引文献19

  • 1WHITE S R, ROACK R M, SCALAPINO D J. Reso- nating valence bond theory of coupled Heisenberg chains[J]. PhysRevLett, 1994, 73(6): 886-889.
  • 2BARNES T, DAGOTTO E, RIERA J, et al. Excitation spectrum of Heisenberg spin ladders[J]. Phys Rev B, 1993, 47(6) : 3196-3203.
  • 3FATH G, LEGEZA O, SOLYOM J. String order in spin liquid phases of spin ladders [J]. Phys Rev B, 2001, 63(13): 134403: 1-5.
  • 4STARYKH O A, BALENTS L. Dimerized phase and transitions in a spatially anisotropic square lattice antifer- romagnet [J]. Phys Rev Lett, 2004, 93(12): 127202:1-4.
  • 5LIU Guanghua, WANG Hailong, TIAN Guangshan. Existence of dimerized phases in frustrated spin ladder models[J]. PhysRevB, 2008, 77(21):214418: 1-8.
  • 6HIKIHARA T, STARYKH O A. Phase diagram of the frustrated spin ladder [J]. Phys Rev B, 2010, 81(6) : 064432:1-12.
  • 7HASE M, KUROE H, OZAWA K, et al. Magnetic properties of Rb2Cu2Mo3O12 including a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor and antiferromagnetic second-nearest- neighbor exchange interactions [J]. Phys Rev B, 2004, 70(10): 104426: 1-6.
  • 8DRECHSLER S L, RICHTER J, GIPPIUS A A, et al. Helical ground state and weak ferromagnetism in the edge-shared chain cuprate NaCu2O2[J]. Europhys I.ett, 2006, 73(1): 83-89.
  • 9ENDERLE M, MUKHERJEE C, FAK B, et al. Quantum helimagnetism of the frustrated spin-1/2 chain LiCuVO4[J]. Europhys Lett, 2005, 70(2): 237-243.
  • 10DMITRIEV D V, KRIVNOV V Ya. Multimagnon bound states in an easy-axis frustrated ferromagnetic spin chain [J]. Phys Rev B, 2009, 79(5): 054421:1-10.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部