摘要
在内埋裂纹线性线弹簧模型的基础上,通过引入二维权函数将裂纹面上的非均布载荷进行均布化等效,求解了中心内埋椭圆形裂纹在沿板厚非均匀分布应力场中的应力强度因子,列出了问题的奇异积分方程,利用Gauss-Chebyshev方法求解了在4种应力场分布情形下的数值结果,并与已有文献的解进行了比较,当a0/c0<0.4、a0/h≤0.3时,两者结果具有较好的一致性,表明了本文方法的合理性和可靠性。
The stress intensity factor of a center embedded elliptical crack in non-uniform stress fields, which is along the thickness direction of the plate, is gained based on the linear line-spring model for embedded cracks. The two dimensional weight function is used to transform the non- uniform stress field to an equivalent uniform one. The singular integral equations are formulated and the numerical results in four cases of stress distributions are gained by Gauss-Chebyshev method. The results are in good accordance with those given in the previous literature when a0/c0 〈 0.4 ,aO/h ≤0. 3, and the rationality and reliability of this method are demonstrated.
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
2012年第3期44-47,共4页
Journal of National University of Defense Technology
关键词
线弹簧模型
中心内埋裂纹
非均布应力场
权函数
应力强度因子
line-spring model
center embedded crack
non-uniform stress field
weight function
stress intensity factor