期刊文献+

非均布应力场中内埋裂纹的应力强度因子

The stress intensity factor of embedded cracks in non-uniform stress fields
下载PDF
导出
摘要 在内埋裂纹线性线弹簧模型的基础上,通过引入二维权函数将裂纹面上的非均布载荷进行均布化等效,求解了中心内埋椭圆形裂纹在沿板厚非均匀分布应力场中的应力强度因子,列出了问题的奇异积分方程,利用Gauss-Chebyshev方法求解了在4种应力场分布情形下的数值结果,并与已有文献的解进行了比较,当a0/c0<0.4、a0/h≤0.3时,两者结果具有较好的一致性,表明了本文方法的合理性和可靠性。 The stress intensity factor of a center embedded elliptical crack in non-uniform stress fields, which is along the thickness direction of the plate, is gained based on the linear line-spring model for embedded cracks. The two dimensional weight function is used to transform the non- uniform stress field to an equivalent uniform one. The singular integral equations are formulated and the numerical results in four cases of stress distributions are gained by Gauss-Chebyshev method. The results are in good accordance with those given in the previous literature when a0/c0 〈 0.4 ,aO/h ≤0. 3, and the rationality and reliability of this method are demonstrated.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2012年第3期44-47,共4页 Journal of National University of Defense Technology
关键词 线弹簧模型 中心内埋裂纹 非均布应力场 权函数 应力强度因子 line-spring model center embedded crack non-uniform stress field weight function stress intensity factor
  • 相关文献

参考文献7

  • 1Zhao W, Wu X R, Yan M G. Weight function method for three dimensional crack problems-I, basic formulation and application to an embedded elliptical crack in finite plates [ J]. Engineering Fracture Mechanics, 1989, 34 ( 3 ) : 593 - 607.
  • 2Wang X, Lambert S B, Glinka G. Approximate weight functions for embedded elliptical cracks [ J]. Engineering Fracture Mechanics, 1998, 59 : 381 - 392.
  • 3Krasowsky A J, Orynyak I V, Gienko A Y. Approximate closed form weight function for an elliptical crack in an infinite body [ J]. International Journal of Fracture, 1999, 99 : 117 - 130.
  • 4Rice J R, Levy N J. The part-through surface cracks in an elastic plate [ J]. Journal of Applied Mechanics, 1972, 39: 185 - 194.
  • 5袁杰红,唐国金,周建平,范瑞祥.无限平板内埋裂纹线弹簧模型[J].固体力学学报,1999,20(1):69-76. 被引量:11
  • 6Wu X R. Approximate weight functions for center and edge cracks in finite bodies [ J ]. Engineering Fracture Mechanics, 1984, 20(1) : 35 -49.
  • 7Erdogan F, Gupta G D. On the numerical solution of singular integral equations [ J ]. Quarterly of Applied Mathematics, 1972, 29:525-534.

二级参考文献5

  • 1唐国金 陆寅初.表面裂纹线弹簧模型的改进.第四届全国断裂会议[M].,1985..
  • 2冈村弘之.线性断裂力学入门[M].江苏科学技术出版社,1981..
  • 3唐国金,第四届全国断裂会议,1985年
  • 4冈村弘之,线性断裂力学入门,1981年
  • 5团体著者,应力强度因子手册,1981年,390页

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部