期刊文献+

Transformation Between Eigenfunctions of Three Components of Geometric Momentum on Two-Dimensional Sphere

Transformation Between Eigenfunctions of Three Components of Geometric Momentum on Two-Dimensional Sphere
原文传递
导出
摘要 A technique of coordinate transformation is devised to overcome the computational difficulty associated with the direct transformation between eigenfunctions of three components of the geometric momentum on two-dimensional spherical surface, and the computations are firstly carried out in new coordinates and secondly the results are transformed back into the original coordinates. The eigenfunctions of different components of geometric momentum is explicitly demonstrated to transform under the spatial rotations in the precise way we anticipate.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第7期31-33,共3页 理论物理通讯(英文版)
基金 Supported by National Natural Science Foundation of China under Grant No. 11175063
关键词 quantum mechanics differential geometry partial differential equations 本征函数 几何 二维 动量 坐标变换 组成部分 直接变换 计算
  • 相关文献

参考文献21

  • 1P.A.M. Dirac, Lectures on Quantum Mechanics, Yeshiva University, New York (1964).
  • 2P.A.M. Dirac, Lectures on Quantum Mechanics, Can. J. Math. 2 (1950) 129.
  • 3B. Podolsky, Phys. Rev. 32 (1928) 812.
  • 4H. Grundling, Rep. Math. Phys. 57 (2006) 97.
  • 5H. Grundling and C.A. Hurst, J. Math. Phys. 39 (1998) 3091.
  • 6L. Kaplan, N.T. Maitra, and E.J. Heller, Phys. Rev. A 56 (1997) 2592.
  • 7J.R. Klauder and S.V. Shabanov, Nucl. Phys. B 511 (1998) 713.
  • 8T. Homma, T. Inamoto, and T. Miyazaki, Phys. Rev. D 42 (1990) 2049.
  • 9Z. Phys. C 48 (1990) 105.
  • 10N. Ogawa, K. ~hljii, and A. Kobushukin, Prog. Theor. Phys. 83 (1990) 894.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部