期刊文献+

一个平均不等式的反向及其类似 被引量:1

Reversion and Analogy of a Mean Inequality
下载PDF
导出
摘要 在最近的几百年中,关于多个正数的算术平均和几何平均的差的估计,是平均不等式研究中的一个持续热点.本文利用最值压缩定理,给出了算术平均和几何平均的差的两个新的估计,部分地回答了J.M.Aldaz一个公开问题. Ia mean inequalities research, the estimation involving the difference between arithmetic mean and geometric mean in variables is continuous for hundreds of years. By means of compressed independent variables theorem, this paper gives the new upper bound of the difference between arithmetic mean and geometric mean, and partly solves an open problem put forward by J. M. Aldaz.
作者 郭忠
出处 《湖南理工学院学报(自然科学版)》 CAS 2012年第2期11-13,16,共4页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
关键词 算术平均 几何平均 不等式 最值压缩定理 arithmetic mean geometric mean inequality compressed independent variables theorem
  • 相关文献

参考文献6

  • 1杨克昌.平均值不等式的一个证明与加强.湖南数学通讯,1986,(4):19-20.
  • 2D.S.密特利诺维奇.解析不等式[M].张小萍,王龙,译.北京:科学出版社,1987.
  • 3Cartwright D. I., Field M. J.. A refinement of the arithmetic mean-geometric mean inequality[J]. Proc. Amor. Math.Soc.,1978(71): 36--38.
  • 4P.S.bullen. Handbook of Means and Their Inequalities[M]. Netherlands: Kluwer Academic Publishers, 2003:156.
  • 5Mercer A McdJmproved upper and lower bounds for the difference of An.Gn[J]. Rocky Mountain J.Math., 2001 (31 ): 553-560.
  • 6J. M. Aldaz. Self-improvement of the inequality between arithmetic and geometric means[J]. Journal of Mathematical Inequalities, 2009(3): 213-216.

共引文献6

同被引文献4

  • 1杨克昌.平均值不等式的一个证明与加强.湖南数学通讯,1986,(4):19-20.
  • 2密特利诺维奇DS.解析不等式[M].张小萍,王龙,译.北京:科学出版社,1987.
  • 3Bullen P S.Handbook of means and their inequalities[M].The Netherlands:Kluwer Academic Publishers,2003.
  • 4Aldaz J M.Self- improvement of the inequality between arithmetic and geometric means[J].Journal of Mathernatieal Inequalities, 2009(3) :213 - 216.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部