期刊文献+

基于幂律分布的网络用户快速排序算法 被引量:5

Quick Ranking Algorithm for Network User Based on Power Law Distribution
下载PDF
导出
摘要 随着网络论坛、博客、微博的发展,引出社会网络中的用户排序问题。将在线网络论坛中用户映射为节点,用户评论过程中形成的回复关系映射为有向关联图,其节点度符合幂律分布。且论坛中用户的主题发布行为和回复关系符合Pagerank算法的互增强和随机游走特性,因此选用Pagerank算法排序用户影响力。该文提出的研究问题:如何提高用户排序应用中数据的存储和运行效率。天涯网络论坛中80%以上用户入度为0,据此,根据入度是否为0划分为两个集合,对入度为0集合按出度构造链接表,设计了基于集合划分的高效排序算法SD-Rank。SD-Rank时空复杂性为O(V′),V′为入度非0节点集。对天涯网络论坛真实用户数据的实验结果表明:SD-Rank算法时空复杂性优于Pagerank算法。 With the wide application of BBS,blog and micro blog etc,how to rank the user becomes a well-recognized research issue,especially in the social network area.The paper analyzes the users relational graph in network BBS,representing the correlation graph by users and replies between users,and reveals its power law distribution in in/out degree.Owing the fact that the user’s behavior of posting and replying is in accordance with Pagerank’s characteristics of random walking and mutual-enforcement,the user’s influence is ranked with Pagerank algorithm.This paper further addresses the issue of time-space ratio in computation resulted by the exponent growth of user’s number.Based on the observation that over 80 percent user’s indegree is 0.Using list structure designs the efficient set-division-ranking arithmetic(SD-Rank) is designed by via list structure after dividing users into two sets: 0-indegree in set0 and non-0-indegree in set1.Through set partitions according to degree distribution,the time-space complexity of SD-Rank is decreased from O(V+E) to O(V′),in which V′ is the size of set1.Experiment on TIANYA BBS dataset shows that SD-Rank is more efficient than Pagerank.
出处 《中文信息学报》 CSCD 北大核心 2012年第4期122-128,共7页 Journal of Chinese Information Processing
基金 国家863自然科学基金(2010AA012504) 国家973重点基础研究发展规划项目基金(G2011CB302605) 国家自然科学基金(61173145)
关键词 幂律 入度 集合划分 快速排序 power law in degree set division quick rank
  • 相关文献

参考文献26

  • 1Agarwal N. , Liu H. , Tang L. , et al. Identifying the influential bloggers in a community[C]//Proeeedingsof the international conference on Web search and web datamining(ICWSM '08), New York, US, ACM, 2008,207-218.
  • 2Paul N. Bennett, Krysta Svore, Susan T. Dumais. Classification-enhanced R,nking [C]//Proceedings of the 19th international conierence on World Wide Web, Raleigh, NC, USA, 2010 :111-120.
  • 3T. L. Fond, J. Neville. Randomization Tests for Dis- tinguishing Social Influence and Homophily Effects[C]//Proceedings of the 19th international conference on World Wide Web, Raieigh, NC, USA, 2010: 601- 610.
  • 4H. Kwak, C. Lee, H. Park, et al. What is Twitter, a Social Network or a News Media[C]//Proceedings of the 19th international contference on World Wide Web, Raleigh, NC, USA, 20113:591-600.
  • 5S. Wu, J. M. Hofman, W. A. Mason, et al. Who says What to Whom on Twitter[C]//Proceedings ofthe 20th international conference on World Wide Web, Madrid, India, 2011:705-714.
  • 6M. Cha, H. Haddadi, F. Benevenuto, e al. Measur- ing user influence on wtitter.. The million follower fal- lacy[C]//Proceedings of the 4th International AAAI Conference on Weblogs and Social Media, Washington DC, 2010.
  • 7J. Weng, E. P. Lim, J. Jiang, et al. Twitterrank.. finding topic-sensitive influential twitterers[C]//Pro- ceedings of the 4th ACM international conference on Web search and data mining(WSDM), 2010:261-270.
  • 8Dan Cosley, D. Huttenlocher,Jon Kleinberg,et al. Se- quential Influence Models in Social Networks [C]// Proceedings of the International Conference on Weblogs and Social Media(ICWSM), 2010.
  • 9A. Anagnostopoulos, R. Kumar, M. Mahdian. Influ- ence and correlation in social networks[C]//Proeeed- ings of the 14th ACM SIGKDD international confer- ence on knowledge discovery and data mining, 2008:7- 15.
  • 10P. Singla, M. Richardson. Yes, there is a correla- tion: from social networks to personal behavior on the web[C]//Proceedings of the 17th international con- ference on World Wide Web, 2008:655-664.

同被引文献53

  • 1刘群,张浩,白硕.自然语言处理开放资源平台[J].语言文字应用,2002(4):50-56. 被引量:9
  • 2施朝健,张明铭.Logistic回归模型分析[J].计算机辅助工程,2005,14(3):74-78. 被引量:23
  • 3张华平,刘群.中文自然语言处理开发平台[EB/OL].http://www.nip.org.cn.2002.
  • 4第31次中国互联网络发展状况统计报告[R].中国互联网络信息中心(CNNIC),2013,1.
  • 5中国互联网络信息中心.第28次中国互联网络发展状况统计报告[R].北京:中国互联网络信息中心,2012.
  • 6TAN Chen-hao,TANG Jie, SUN Ji-meng,et al. Social action tracking via noise to tolerant time-varying factor graphs[ C]//Proc of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press ,2010 : 1049-1058.
  • 7张呖,路荣,杨青.微博客中转发行为的预测研究[C]//全国信息检索会议.2011.
  • 8BANDARI R, ASUR S, HUBERMAN B. The pulse of news in social media:forecasting popularity[ C]//Proc of AAAI Conference. 2012.
  • 9KAPLAN A M, HAENLEIN M. The early bird catches the news:nine th!ngs you should know about micro-blogging [ J ]. Business Hori- zons,2011,54(2) :105-113.
  • 10CHA M,HADDADI H,BENEVENUTO F,et al. Measuring user influ- ence in twitter:the million follower fallacy[ C]//Proc of AAAI Coner- ence on Weblogs and Social Media. 2010.

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部