期刊文献+

视觉显著性特征约束下的骨架生长算法 被引量:2

Skeleton-growing algorithm based on visual saliency features
下载PDF
导出
摘要 骨架特征在图像处理和计算机图形学等领域有着广泛的应用,而常规的骨架提取算法易受到噪声和物体自身变化的影响,使得提取的骨架难以进行后续的应用。本文提出联合离散曲线演化和弯曲度比率这两种视觉显著性特征约束下的骨架生长算法。在骨架生长过程中通过对判为结点的骨架点的邻域骨架点进行进一步的弯曲度比率约束,有效抑制了离散曲线演化约束骨架提取算法对于弯曲度较大的部位所产生的无法避免的冗余枝。通过调节保留的离散曲线演化点数以及弯曲度比率阈值,可获得多尺度的骨架。实验证明,在较大非刚体形变和轮廓噪声等干扰下,本文提出的算法仍能有效的抑制冗余骨架枝的产生,获得的骨架能够较好的表示图形中视觉重要部分。 The skeleton is a very useful shape descriptor and has been widely applied in image processing and com- puter graphics. However, shape skeleton extraction is usually highly affected by the boundary noise and large deformation of object, which cannot be used in further applications. To overcome this problem, a novel skeleton growing algorithm combining the strength of two complementary shape saliency measures, i.e. discrete curve evolution (DCE) and bending potential ratio (BPR), is proposed. During the skeleton growth, the compact skeleton is directly obtained and the poten- tially redundant segments are pre-constrained under the control of the two introduced visual saliency measures. This strategy avoids the pruning stage naturally. Also the level-of-detail skeleton can be generated under the control of DCE and BPR. The experimental results on noisy and non-rigid deformed shapes demonstrate the valid of the proposed algo- rithm in the paper.
出处 《电子测量与仪器学报》 CSCD 2012年第6期535-540,共6页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金项目(61174170) 国家自然科学基金项目(61004103) 安徽省高校自然科学研究重点项目(KJ2010A193)
关键词 骨架 离散曲线演化 弯曲度比率 多尺度 视觉显著性特征 skeleton discrete curve evolution bending potential ratio hierarchical visual saliency feature
  • 相关文献

参考文献15

  • 1BLUM H. Biological shape and visual science[J]. Jour- nal of Theoretical Biology, 1973, 38(2): 205-287.
  • 2王晶,李景萃.指纹图像快速细化的改进算法及其应用[J].仪器仪表学报,2008,29(7):1535-1539. 被引量:7
  • 3张东波,尚星宇.病变视网膜图像的血管骨架提取方法研究[J].电子测量与仪器学报,2011,25(9):749-755. 被引量:13
  • 4LAM L, SUEN C Y. An evaluation of parallel thinning algorithms for character recognition[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1995, 17 (9): 914-919.
  • 5LEYMARIE F, LEVINE M D. Simulating the grass Dre transform using an active contour model[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1992, 14 (1): 56-75.
  • 6刘俊涛,刘文予,吴彩华,原亮.一种提取物体线形骨架的新方法[J].自动化学报,2008,34(6):617-622. 被引量:24
  • 7MAYYA N, RAJAN V T. Voronoi diagrams of polygons: a framework for shape representation[C]. Proceedings of the Conference on Computer Vision and Pattern Recog- nition, 1994: 638-643.
  • 8SIDD1QI K, BOUIX S, TANNENBAUM A, et al. Hamilton-jacobi skeletons[J]. International Journal of Compute, 2002, 48(3): 215-231.
  • 9VAN EEDE M, MACRINI D, et al. Canonical skele- tons for shape matching[C]. Proceedings of the 18th In- ternational Conference on Pattern Recognition, 2006: 64-69.
  • 10OGNIEWICZ R L., KUBLER O. Hierarchic voronoi skeletons[J]. Pattern Recognition, 1995, 28(3): 343-359.

二级参考文献50

共引文献40

同被引文献26

  • 1张之敬,金鑫,周敏.精密微小型制造理论、技术及其应用[J].机械工程学报,2007,43(1):49-61. 被引量:27
  • 2HORIE M, NOZAKI T, IKEGAMI K. Design systems of super elastic hinges and its application to micro- manipula- tors[J]. JSME International Journal, 1997, 40(2): 323-328.
  • 3OHLENDORF M, HERRMANN C, HESSELBACH J. Simulation based disassembly systems design [J]. Envi- ronmentally Conscious Manufacturing III, Proceeding of SPIE, 2004, 52(2): 94-102.
  • 4LIAO J B, WU M H, BAINES R W. A coordinate meas- uring machine vision system [J]. Computers in Industry, 1999, 38(3): 239-248.
  • 5CHAN V H, BRADLEY C, VICKERS G W. A multi- sensor approach to automating coordinate measuring ma- chine-based reverse engineering [J]. Computers in Industry, 2001, 44(2): 105-115.
  • 6WORKSHOP R. Workshop on micro/meso-mechanical manufacturing[R]. Evanston, Illinois, USA, Northwestern University. 2000.
  • 7LEE K, DORNFELD D A. Micro-burr formation andminimization through process control [J]. Precision Engi- neering, 2005, 29(2): 246-252.
  • 8LIU W, JIANG H, BAI X, et al. Skeleton extraction from incomplete boundaries in sensor networks based on distance transform [C]. Distributed Computing Systems (ICDCS), 2012 IEEE 32nd International Conference on. IEEE, 2012: 42-51.
  • 9PENG F W, FAN Z, SHI W M. School of Mechatronic Engineering & Automation, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, NO. 149, Yanchang Rd. 200072 Shanghai, China [ C ]. Electronic Measurement & Instruments (ICEMI), 2013 IEEE llth International Conference on. IEEE, 2013, 2: 519-523.
  • 10DING J, WANG Y, YU L. Extraction of Human Body Skeleton Based on Silhouette Images [C]. Education Technology and Computer Science (ETCS), 2010 Second International Workshop on. IEEE, 2010, 1: 71-74.

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部