期刊文献+

Global Inference Preserving Projection for Semi-supervised Discriminant Analysis

Global Inference Preserving Projection for Semi-supervised Discriminant Analysis
下载PDF
导出
摘要 Semi-supervised dimensionality reduction is an important research area for data classification. A new linear dimensionality reduction approach, global inference preserving projection (GIPP), was proposed to perform classification task in semi-supervised case. GIPP provided a global structure that utilized the underlying discriminative knowledge of unlabeled samples. It used path-based dissimilarity measurement to infer the class label information for unlabeled samples and transformd the diseriminant algorithm into a generalized eigenequation problem. Experimental results demonstrate the effectiveness of the proposed approach. Semi-supervised dimensionality reduction is an important research area for data classification.A new linear dimensionality reduction approach,global inference preserving projection(GIPP),was proposed to perform classification task in semi-supervised case.GIPP provided a global structure that utilized the underlying discriminative knowledge of unlabeled samples.It used path-based dissimilarity measurement to infer the class label information for unlabeled samples and transformd the discriminant algorithm into a generalized eigenequation problem.Experimental results demonstrate the effectiveness of the proposed approach.
出处 《Journal of Donghua University(English Edition)》 EI CAS 2012年第2期144-147,共4页 东华大学学报(英文版)
基金 National Natural Science Foundations of China (No.61072090,60874113)
关键词 semi-supervised learning dimensionality reduction manifoM structure semi-supervised learning dimensionality reduction manifold structure
  • 相关文献

参考文献15

  • 1HeX F,Yan S C,Hu Y X. Face Recognition Using Laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,(03):328-340.
  • 2Turk M A,Pentland A P. Face Recognition Using Eigenfaces[A].Maui,USA,1991.586-591.
  • 3Belhumeur P N,Hespanha J P,Kriegman D J. Eigenfaces vs.Fisheffaces:Recognition Using Class Specific Linear Projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,(07):711-720.doi:10.1109/34.598228.
  • 4Foley D. Considerations of Sample and Feature Size[J].IEEE Transactions on Information theory,1972,(05):618-626.doi:10.1109/TIT.1972.1054863.
  • 5Belkin M,Niyogi P,Sindhwani V. Manifold Regularization:a Geometric Framework for Learning from Labeled and Unlabeled Examples[J].The Journal of Machine Learning Research,2006.2399-2434.
  • 6Chen C,Zhang L J,Bu J J. Constrained Laplacian Eigenmap for Dimensionality Reduction[J].Neurocomputing,2010,(4/5/6):951-958.
  • 7Hou C P,Zhang C S,Wu Y. Multiple View Semisupervised Dimensionality Reduction[J].Pattern Recognition,2010,(03):720-730.doi:10.1016/j.patcog.2009.07.015.
  • 8Cai D,He X F,Han J W. Semi-supervised Discriminant Analysis[A].Rio de Janeiro,Brazil,2007.1-7.
  • 9Song Y Q,Nie F P,Zhang C S. A Unified Framework for Semi-supervised Dimensionality Reduction[J].Pattern Recognition,2008,(09):2789-2799.doi:10.1016/j.patcog.2008.01.001.
  • 10Xu D,Yan S C. Semi-supervised Bilinear Subspace Learning[J].IEEE Transactions on Image Processing,2009,(07):1671-1676.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部