期刊文献+

基于全变分α散度最小化的PET优质重建 被引量:1

Total Variation Based α-Divergence Minimization Reconstruction for Positron Emission Tomography
下载PDF
导出
摘要 为了获得优质的PET成像,本文提出一种基于全变分阿尔法散度最小化的PET重建新方法.新方法通过引入阿尔法散度度量投影数据和估计值之间的偏差;通过增加全变分正则化修正阿尔法散度最小化解的一致性.针对新构建的PET重建目标函数的求解,本文提出一种基于次梯度理论的交替式迭代策略,期间运用自适应非单调线性搜索来保证算法的收敛性.仿真和临床PET数据实验表明,本文方法在噪声抑制和边缘保持方面均优于传统的PET重建方法. To achieve high diagnostic PET imaging, we propose a novel total variation (TV) based alphadivergence mini mization reconstruction algorithm. The presented cost function uses the alphadivergence to measure the discrepancy between the measured and the esfmated emission projection data and utilizes the TV regularization to regularize the consistency of solution. A semiimplicit iteration scheme is used in the proposed algorithm by adapting the subgradient theory; and then an adaptive nonmono tone line search scheme is taken to guarantee the algorithm convergence. The experiments from the simulated phantom data and the real emission data show that the presented algorithm performs better than the other classical PET reconslruction methods in the noise suppressing and the edge details preserving.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第6期1263-1268,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.81101046 No.81000613 No.11001060) 国家'九七三'重点基础研究发展计划项目(No.2010CB732503) 国家科技支撑计划项目(No.2011BAI12B03) 国家重大仪器专项(No.2011YQ03011404) 广东省科技计划项目(No.2011A030300005) 江西省青年科学家培养对象计划项目(No.20112BCB23027)
关键词 正电子发射成像 阿尔法散度 全变分 自适应非单调线性搜索 positron emission tomography (PET) alpha-divergence total variation adaptive nonmonotone line search
  • 相关文献

参考文献23

  • 1Bertero M,Mol C D,Pike E R.Linear inverse problems with discrete datat I:General formulation and singular system analysis[J].Inverse Problem,1985,1(4):301-330.
  • 2Bertero M,Pogcio T A,Torre V.Ill posed problems in early vision[J].Proc IEEE,1988,76(8):869-889.
  • 3Shepp L A,Vardi Y.Maximum likelihood reconstruction for emission tomography[J].IEEE Transactions on Medical Imaging,1982,1(2):113-122.
  • 4Lange K.Convergence of EM image reconstruction algorithms with Gibbs smoothness[J].IEEE Transactions on Medical Imaging,1990,9(4):439-446.
  • 5Anderson J M,Mair B A,Rao M,Wu C H.Weighted least-squares reconstruction algorithms for positron emission tomography[J].IEEE Transactions on Medical Imaging,1997,16(2):159-165.
  • 6Leahy R M,Qi J Y.Statistical approaches in quantitative positron emission tomography[J].Statistics and Computing,2000,10(2):147-165.
  • 7Fessler J A.Penalized weighted least-squares image reconstruction for positron emission tomography[J].IEEE Transaction on Medical Imaging,1994,13(2):290-300.
  • 8Teng Y,Zhang T.Iterative reconstruction algorithms with α-divergence for PET imaging[J].Computerized Medical Imaging and Graphics,2011,35(4):294-301.
  • 9Cichocki A,Lee H,et al.Non-negative matrix factorization with α-divergence .Pattern Recognition Letters,2008,29(9):1433-1440.
  • 10Ma J H,Tian L L,Huang J,et al.Low-dose computed tomography image reconstruction by α-divergence constrained total variation minimization .Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine Conference Record .Potsdam:IEEE Press,2011.439-442.

二级参考文献32

  • 1RaymondH.Chan,Chung-waHo,MilaNikolova.CONVERGENCE OF NEWTON'S METHOD FOR A MINIMIZATION PROBLEM IN IMPULSE NOISE REMOVAL[J].Journal of Computational Mathematics,2004,22(2):168-177. 被引量:9
  • 2CHENGBing,WANGYing,ZHENGNanning,JIAXinchun.MRF model and FRAME model-based unsupervised image segmentation[J].Science in China(Series F),2004,47(6):697-705. 被引量:4
  • 3吕庆文,陈武凡.基于互信息量的图像分割[J].计算机学报,2006,29(2):296-301. 被引量:40
  • 4LU Qingwen CHEN Wufan.Unsupervised segmentation of medical image based on difference of mutual information[J].Science in China(Series F),2006,49(4):484-493. 被引量:4
  • 5Kalender Willi A. Hebel Robert, Ebersberger Johannes. Reduction of CT artifacts caused by metallic implants[ J]. Radiology, 1987,164(2) :576- 577.
  • 6Tuy K Heang. A post-processing algorithm to reduce metallic clip artifacts in CT image [ J ]. European Radiology, 1993, 3 (2) : 129 - 134.
  • 7Man B De,Nuyts J, Dupont P, Marchal G, Suetens P. Reduction of metal streak artifacts in X-ray computed tomography using a transmission maximum a posterior algorithm [ J ]. IEEE Transactions on Nuclear Science, 2000,47 (3) : 977 - 981.
  • 8Wei J, Chen L, Sandison G, Liang Y, Xu L. X-ray CT high- density artifact suppression in the presence of bones [ J ]. Physics in Medicine and Biology,2004,49:5407- 5418.
  • 9Dan Xia, Roeske John C, Yu Lifeng, Pelizzari Charles A, Mundt Arno J and Pan Xiaochuan. A hybrid approach to reducing computed tomography metal artifacts in intracavitary brachytherapy [ J]. Brachytherapy, 2005,4( 1 ) : 18 - 23.
  • 10Matthieu Bal, Lothar Spies. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering [ J ]. Medical Physics, 2006,33 (8) : 2852 - 2859.

共引文献24

同被引文献11

  • 1曾更生.医学图像重建人门[M].北京:高等教育出版社,2009.125-171.
  • 2J Anderson,BA Mair,Murali Rao, et al. Weighted least-squares reconstruction methods for positron emission tomography [ J ]. IF.EE Trans on Med Image, 1997,16(2) : 159 - 165.
  • 3J A Fessler. Penalized weighted least-squares image recon- struction for positron emission tomography[ J ]. IEEE Trans on Med Image. 1994,13(2) :290 - 300.
  • 4J A Fessler,E P Ficaro, et al. Grouped-coordinate ascent algo-rithms for penalized-likelihood transmission image reconstruc- tion[J]. IEEE Trans on Med Image, 1997,16(2):166- 175.
  • 5Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[ J ]. IEEE Trans Inform Theory, 2006,52 (2) : 489 - 509.
  • 6Donoho D L. Compressed sensing[ J]. IEEE Trans Inform The- ory,2006,52(4) : 1289 - 1306.
  • 7朱宏擎,舒华忠,等.正电子发射计算机断层显像的全变分加权成像方法[P].中国专利:200510037621.8,2005-01-06.
  • 8xiaoqiang Lu, Yi sun, et al. Image reconstruction by an alter- nating minimization[J].Neuro Computing, 201 l, 74 ( 5 ) : 661 - 670.
  • 9S J Wright, R D Nowak, et al. Sparse reconstruction by sepa- rable approximation[ JJ. IEEE. Trans on Signal Process, 2009, 57(7) :2479 - 2492.
  • 10Yu H, Wang G. Compressed sensing based interior tomogra- phy[J]. PhysMed Biol,2009,54(9):2791 - 2805.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部