期刊文献+

基于四阶累积量的波段子集高光谱图像异常检测 被引量:7

Anomaly detection of hyperspectral image for band subsets based on fourth order cumulant
原文传递
导出
摘要 针对由于高光谱图像光谱和空间分布的复杂性导致核RX算法检测性能不高这一问题,提出了基于四阶累积量的波段子集非线性异常检测算法。首先先依据各相邻波段间的相关系数,将原始图像数据划分为多组波段子集;然后,利用主成分分析(PCA)构造的正交子空间对各波段子集进行背景抑制,得到图像误差数据;在此基础上,再次利用PCA提取各波段子集的特征信息,使异常目标信息集中于前面几个波段;最后,提取各子集主成分中含有最大四阶累积量值的波段,构成最优波段子集,并与核RX算法结合进行异常检测。利用真实的AVIRIS高光谱图像对算法进行仿真,结果表明,本文算法检测精度高,虚警率低,性能明显优于核RX算法。 The anomaly detection performance of kernel RX is low as a result of the complexity of spectral and spatial distributions of hyperspeetral images. Aiming at the problem, this paper proposes an algorithm of band subsets anomaly detection for hyperspectral image based on fourth order cumulant. Firstly, the algorithm divides the original hyperspectral image into subsets in low dimensions according to the correlation coefficient between spectral bands. Then, the error image data are achieved after background interferences are suppressed for subset bands using the orthogonal sub-spaces constructed by principal component analysis. Based on the data, the feature information of all band subsets is extracted by using the principal component analysis, which makes the information of anomaly target concentrated on the previous bands. At last, the optimal band subsets are achieved by fourth order cumulant of principal com- ponent in band subsets,and the anomaly detection is carried out combined with the kernel RX. The re sults show that the proposed algorithm has higher precision and lower false alarm probability, and it greatly outperforms the classical kernel RX algorithm.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第8期1582-1588,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61077079) 高等学校博士学科点专项科研基金(20102304110013) 哈尔滨市优秀学科带头人基金(2009RFXXG034)资助项目
关键词 高光谱图像 异常检测 背景抑制 四阶累积量 hyperspectral image anomaly detection background suppression fourth order cumulant
  • 相关文献

参考文献16

  • 1Reed I S, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Trans. Acoust., Speech Signal Process., 1990,38 (10) :1760-1770.
  • 2谷延锋,刘颖,贾友华,张晔.基于光谱解译的高光谱图像奇异检测算法[J].红外与毫米波学报,2006,25(6):473-477. 被引量:17
  • 3Matteoli S, Diani M, Qorsini G. Different approaches for improved covariance matrix estimation in hyperspectral anomaly detection [A]. Proceedings Riunione Annuale GTTI[C]. 2009.
  • 4Banerjee A,Burlina P,Diehl C. A support vector method for anomaly detection in hyperspectral imagery[J]. IEEE Trans. Geoscience and Remote Sensing, 2006,44 (8) : 2282-2291.
  • 5Safa K, Saeid H,Abdolreza S. Anomaly detection in hy- perspe-ctral images based on an adaptive support vector method[J]. IEEE Geoscience and Remote Sensing Let- ters,2011 ,8(4) : 646-650.
  • 6Heesung Kwon, Nasrabadi N M. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sens- ing,2005,43(2) :388-397.
  • 7ZHANG Ye, ZHANG Jun-ping, JIN Ming. Adaptive subsp- ace decomposition and classification for hyperspectral images[J]. Chinese Journal of Electronics, 2000,9 (1) : 82-88.
  • 8王立国,谷延锋,张晔.基于支持向量机和子空间划分的波段选择方法[J].系统工程与电子技术,2005,27(6):974-977. 被引量:13
  • 9赵春晖,胡春梅,包玉刚.一种背景误差累积的高光谱图像异常检测算法[J].光子学报,2010,39(10):1830-1835. 被引量:12
  • 10寻丽娜,方勇华,李新.高光谱图像中基于端元提取的小目标检测算法[J].光学学报,2007,27(7):1178-1182. 被引量:27

二级参考文献87

共引文献91

同被引文献69

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部