期刊文献+

静电放电电磁脉冲耦合的非线性优化建模 被引量:3

Nonlinear Optimized Modeling of Electromagnetic Pulse Coupling in Electrostatic Discharge
下载PDF
导出
摘要 针对现有机理建模算法普遍存在计算电磁脉冲响应过程过于复杂的问题,为能够给电子设备静电放电电磁脉冲响应计算提供一种简便有效的能量耦合建模方法,设计了脉冲场强测试仪的静电放电辐射实验。用NARX神经网络代替传统NARX网络,依靠遗传算法对网络的初始权值、阈值进行优化,以3.5 kV静电放电实验数据作为建模数据对系统进行非线性辨识,并对4.5 kV静电放电电磁脉冲响应进行预测。建模结果表明,两种模型均能准确预测响应波形,但优化后的NARX神经网络模型精度更高。该建模方法计算过程简单。该方法同样适用于其他电磁脉冲响应建模。 For the problem that the computing process of electromagnetic pulse response in the existing mechanism modeling algorithms is very complex, a radiation experiment of electrostatic discharge for pulse field sensor is designecl in order to offer a simple but effective method for computing electromagnetic pulse response of electronic devices. In the modeling, NARX Neural Network (NN NARX) is substituted for the conventional NARX network, and the layer weight matrices and bias vectors are optimized by genetic algorithm (GA). Two models are built and trained on the basis of the 3.5 kV electrostatic discharge experiment data to identify the dynamic characteristics of the system. The electromagnetic pulse response of 4.5 kV electrostatic discharge is predicted by using the models, and the results show that both optimized NN NARX model and conventional NARX model can predict the response wave accurately through comparing the predicted response with the measured data, but the model optimized with NN NARX performs better. The proposed modeling method is easy in use. and also suitable for modeling of other electromagnetic pulse responses.
出处 《高压电器》 CAS CSCD 北大核心 2012年第8期34-39,44,共7页 High Voltage Apparatus
基金 国家自然科学基金(50877079) 国防科技重点实验室基金(9140C87030211JB34)~~
关键词 静电放电电磁脉冲 NARX 遗传算法 非线性辨识 electrostatic discharge electromagnetic pulse (ESD EMP) NARX genetic algorithm nonlinearidentification
  • 相关文献

参考文献13

二级参考文献99

共引文献74

同被引文献42

  • 1习锋杰,姜宗福,许晓军.光强非均匀分布对波前曲率传感器的影响[J].光学学报,2006,26(9):1293-1296. 被引量:8
  • 2孙国至,刘尚合,陈京平,贺其元.战场电磁环境效应对信息化战争的影响[J].军事运筹与系统工程,2006,20(3):43-47. 被引量:77
  • 3陈炜峰,蒋全兴.电磁脉冲模拟器用纳秒脉冲源的研制[J].高压电器,2006,42(5):331-334. 被引量:6
  • 4雷磊,周永平,张宝华,彭炜.ESD对电子设备的危害及防护[J].装备环境工程,2007,4(2):81-84. 被引量:10
  • 5周壁华 陈彬 石立华.电磁脉冲及其工程防护[M].北京:国防工业出版社,2003..
  • 6田玉波.混合神经网络技术[M].北京:科学出版社,2009:78-80.
  • 7NARENDRA K S,PARTHASARATHY K. Identification and control of dynamical systems using neural networks[J]. IEEE Transactions on Neural Networks, 1990,1(1):4-27.
  • 8FUNAHSHI K I, NAKAMURA Y. Approximation of dynamical systems by continuous time recurrent neural networks[J]. Neural Networks, 1993(6):801-806.
  • 9LEONG K L. Approximation theory and recurrent network [C]//Proc. IJCNN.Baltimore : [s.n.], 1992:266-271.
  • 10FANG Yong-hua,YAGOUB M C E,ZHANG Qi-jun. A new macromodeling approach for nonlinear microwave circuits based on recurrent neural networks[J]. IEEETransactions on Microwave Theory and Techiques,2000, 48(12) :2335-2344.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部