摘要
悬架是用来支持车身的系统,通过隔离道路干扰使得乘客感觉舒适、并确保车辆稳定.为此研究了全车模型悬架系统在下列几种控制方式下的性能:被动控制、半主动控制、自适应标准可加性模型(SAM)下的主动控制.全车模型可以为车辆悬架系统提供一些必要的性能参数,如车身偏移、车轮偏移和悬架偏斜.乘坐的舒适性和车辆的操控性决定了所需悬架系统的性能.乘坐的舒适性取决于车身偏移和乘客座位的偏移,而车辆的稳定由其他自由度(如俯仰和滚转)决定.半主动和主动悬架控制的设计通过MATLAB/SIMULINK加以实现,充分考虑了不规则的路面,并以此验证半主动控制和SAM主动控制的性能.实验结果表明,SAM主动控制能够改善乘坐的舒适性和车辆的操控性.
The suspension system aims to support vehicle's body. It provides passenger comfort and vehicle's stability by isolating road disturbances. This paper aims to examine the performances of the full-car model suspension system using passive, semi-active and adaptive standard additive model (SAM) active control. The full-car model can provide necessary performance parameters of vehicle suspension such as body displacement, wheel displacement and suspension deflection. Ride comfort and vehicle handling determines the performance of the suspension system. Ride comfort can be determined by vehicle's body displacement and passenger seat displacement, while vehicle stability can be determined by other degrees of freedom (DoF) like pitch and roll. Irregular road surfaces are taken into account to check the performances of semi-active control and SAM active control. Design of semi-active and active suspension control is implemented in MATLAB/SIMULINK. Results show that rider comfort and vehicle handling can be improved with SAM active control.
关键词
模糊逻辑系统
主动悬架系统
控制系统
fuzzy logic system
active suspension system
control system