期刊文献+

一类保持等价关系的变换半群的正则性和格林关系 被引量:3

Regularity and Green's Relations for a Semigroup of Transformations Preserving an Equivalence Relation
下载PDF
导出
摘要 设X为非空集合,|X|>3,TX是X上的全变换半群.设E是X上的一个等价关系,TE(X)是由等价关系E所决定的TX的子半群,满足(x,y)∈E,(f(x),f(y))∈E.记T2(X)是TE(X)的一个子半群,满足f∈T2(X),|f(X)|≤2.讨论了半群T2(X)上的格林关系和正则元. Let X be a set with| X| 〉 3, Tx the full transformation semigroup on X,E an equivalence relation on X and TE(X) the subsemigroup of Tx determined by E which satisfies ∨ (x,y)∈ E, (f(x) ,f(y) )∈ E. Let T2 (X) be a subsemigroup of Te(X) and ∨f∈ T2 (X) , |f(X)|≤2. The Green' s relations and regular elements in the semigroup Tz (X) arc described and discussed.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2012年第3期281-284,288,共5页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(10971086) 河南省科技发展规划项目(122300410276)
关键词 半群 格林关系 正则 semigroups Green' s relations regular elements
  • 相关文献

参考文献8

  • 1Pei H S.Equivalences,α-semigroups andα-congruences[J].Semigroup Forum,1994,49:49-58.
  • 2Pei H S.Regularity and Green’s relations for semigroups of transformations that presereve an equivalence[J].Communications in Algebra,2005,33:109-118.
  • 3Pei H S.On the rank of the semigroup TE(X)[J].Semigroup Forum,2005,70:107-117.
  • 4Pei H S,Sun L,Zhai H C.Green’s relations for the variants of transformation semigroups preserving an equivalence relation[J].Communica-tions in Algebra,2007,35:1971-1986.
  • 5Pei H S,Zhou H J.Abundant semigroups of transformations preserving an equivalence relation[J].Algebra Colloquium,2011,18:77-82.
  • 6Howie J M.Fundamentals of semigroup theory[M].London:Oxford University Press,1995.
  • 7裴惠生,吴永福.保持两个等价关系的夹心半群的格林关系和正则性[J].信阳师范学院学报(自然科学版),2008,21(2):161-164. 被引量:4
  • 8裴惠生,卢凤梅.一个变换半群的同余(英文)[J].信阳师范学院学报(自然科学版),2011,24(3):281-286. 被引量:2

二级参考文献18

  • 1Magill K D Jr. Some homomorphism theorems for a class ofsemigroups [ J]. Proc London Math Soc, 1965,15 (3) : 517-526.
  • 2Hofmann K H, Magill K D Jr. The smallest proper congruence on S(X) [ J]. Glasgow Math J, 1988, 30:301-313.
  • 3Pei H S. Equivalences, a-semigroups and a-congruences[J]. Semigroup Forum, 1994,49: 49-58.
  • 4Pei H S. Regularity and Green's relations for semigroups of transformations that presereve an equivalence [ J]. Communications in Algebra, 2005,33 : 109-118.
  • 5Pei H S. On the rank of the semigroup TE ( X) [J]. Semigroup Forum, 2005,70: 107-117.
  • 6Pei H S, Sun L, Zhai H C. Green' s relations for the variants of transformation semigroups preserving an equivalence relation [ J ]. Communications in Algebra, 2007,35 : 1971-1956.
  • 7Pei H S, Zhou H J. Abundant semigroups of transformations preserving an equivalence relation[ J]. Algebra Colloquium, 2011,18:77-82.
  • 8Howie J M. Fundamentals ofsemigroup theory[ M]. London:Oxford University Press, 1995.
  • 9Howie J M. Fundamentals of Semigroup Theory[ M ]. Oxford University Press, 1995.
  • 10Magill K D, Subbiah S. Green's Relations for Regular Elements of Sandwich Semigroups, Ⅰ: Genera/Resalts[J]. Proc London Math Soc ( S0024-6115 ), 1975,31 (3) : 194-210.

共引文献4

同被引文献27

  • 1Kowol G, Mirsch H. Naturally ordered transformation semigroup [J]. Monatsh Math, 1986, 102:115-138.
  • 2Sun Lei, Pei Huisheng, Cheng Zhenxing. Naturally ordered transformation semigroups preserving an equivalence [J]. Bull Austral Math Soc, 2008,78:117-128.
  • 3Pei Huisheng, Deng Weina. The Natural order for the E-order-preserving transformation semigroup [J]. Asian-European Journal of Mathematics, 2012, 5 (3) : 1250035 (1-14).
  • 4Deng Lunzhi, Zeng Jiwen, Xu Bo. Green's Relations and Regularity for semigroups of Transformations that preserve Double Direction Equivalence [J]. Semigroup Forum, 2010, 80: 416-425.
  • 5Sun Lei, Sun Junling. A partial order on transformation semigroups that preserve double direction equivalence relation [J]. Journal of Algebra and Its Applications, accepted 22 January 2013, to appear.
  • 6Gomes G M S, Howie J M. On the ranks of certain fnite semigroups of transformations [ J ]. Math Proc Camb Phil Soc, 1987 ( 101 ) : 395-403.
  • 7Gomes G M, Howie J M. On the ranks of certain semigroup of order-preserving transformations [J]. Semigroup Forum, 1992,45 (3) :272-282.
  • 8Garba G U. On the idempotent ranks of certain semigroups of order-preserving transformations [ J ]. Portugaliae Mathematica, 1994,51 ( 2 ) : 185- 204.
  • 9Sommanee W, Sanwong J. Rank and idempotent rank offinitefuU transformation semigroups with restricted range[J]. Semigroup Forum, 2013, 87( 1 ) :230-242.
  • 10Howie J M. Fundamentals of Semigroup Theory[ M]. Oxford: Oxford University Press, 1995.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部