期刊文献+

等离子体激励频率对压气机扩稳效果的影响 被引量:7

Effect of Plasma Exciting Frequency on Compressor Stable Operating Range Improvement
下载PDF
导出
摘要 为考察放电频率对压气机扩稳效果的影响,实验研究了定常等离子体激励和非定常等离子体激励的扩稳效果。实验在单转子轴流压气机实验台上进行。压气机转速为900r/min时,采用激励电压峰峰值为14.8kV、功率为180W定常等离子体激励可以获得1.1%的扩稳效果。压气机转速提高至1 200r/min,采用定常等离子体激励无法实现扩稳,而采用非定常等离子体激励可以获得近2%的扩稳效果,且功耗为36W。可见相较定常激励,非定常激励的扩稳效果好且功耗低。通过分析电压波形,发现目前使用的非定常等离子体激励电源输出电压波动较大,这样易于发生爬电,限制了等离子体流动控制的效果,因此还需要进一步改进等离子体电源以获得更规则的电压波形。 To investigate the effect of discharge frequency on compressor stability, the stable operating range improvement by steady/unsteady plasma exciting is experimentally investigated. Experiments are carried out on a low speed axial compressor with a single rotor. With steady plasma exciting of 16.8 kV and 180 W, the compressor stability range expanded by 1.1% at rotor speed of 900 r/min. Increasing the rotor speed to 1 200 r/rain, steady plasma exciting failed to expand its stability range. In contrast, the compressor stability range expanded by 20% with unsteady plasma exciting, of which the power consumption was 36 W. So it can be concluded that ,compared with steady plasma exciting, unsteady plasma exciting performs better at expanding compressor stability range with less power consumption. The analysis on voltage waveform shows that, the voltage output of present power source used for unsteady exciting is not stable, which results in easily generating creepage and consequently limits the flow control ability of plasma. The power source needs to be improved to get better voltage waveform output.
出处 《高电压技术》 EI CAS CSCD 北大核心 2012年第7期1629-1635,共7页 High Voltage Engineering
基金 国家自然科学基金(50906085)~~
关键词 压气机 扩稳 流动控制 等离子体 定常激励 非定常激励 compressor stability margin improvement flow control plasma steady exciting unsteady exciting
  • 相关文献

参考文献37

二级参考文献260

共引文献346

同被引文献185

  • 1ZHANG PanFeng1,2, LIU AiBing1 & WANG JinJun1,2 1Institute of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China,2Key Laboratory of Fluid Mechanics, Ministry of Education, Beijing 100191, China.Flow structures in flat plate boundary layer induced by pulsed plasma actuator[J].Science China(Technological Sciences),2010,53(10):2772-2782. 被引量:8
  • 2邵涛,孙广生,严萍,彭燕昌,张适昌.纳秒脉冲气体放电机理研究现状[J].高电压技术,2004,30(7):40-42. 被引量:20
  • 3Heintze M, Zedlitz R, Bauer G H J. Analysis of high rote a-Si:H deposition in a VHF plasma[J]. Journal of Physics D: Applied Physics, 1993, 26(6): 1781-1786.
  • 4GrafU, Meier J, Kroll U. High rate growth of microerystalline silicon by VHF-GD at high pressure[J]. Thin Solid Films, 2003, 427(1/2): 37-40.
  • 5Kakiuchi H, Ohmi H, Harada M. Fommtion of silicon dioxide layers at low temperatures (150-400 ℃) by atmospheric pressure plasma oxidation of silicon[J]. Science and Technology of Advanced Materials, 2007, 32(8): 137-141.
  • 6Kakiuchi H, Nak'ahama Y, Ohmia H. Engineering structure and properties of hafnium oxide films by atomic layer deposition temperature[J]. Thin Solid Films, 2005, 479(1/2): 1-11.
  • 7Kakiuchi H, Ohmi H, Aketa M. Effect of hydrogen on the structure of high-rate deposited SiC on Si by atmospheric pressure plasma chemical vapor deposition using high-power-density condition[J]. Thin Solid Films, 2006, 496(2): 259-269.
  • 8Shirai H, Sakurai Y, Yeo M. Very-high-frequency thermal micro plasma jet for the rapid crystallization of amorphous silicon[J]. Thin Solid Films, 2008, 516(13): 4456-4461.
  • 9Sakurai Y, Yen M, Shirai H. Rapid recrystallization of amorphous silicon utilizing the plasma jet at atmospheric pressure[J]. Joumal of Non-Crystalline Solids, 2006, 352(9/1 0): 989-992.
  • 10Mori Y, Yoshii K, Kakiuchi H. Atmospheric pressure plasma chemical vapor deposition system for high-rate deposition of functional materials[J]. Review of Scientific Instruments, 2000, 71 (8): 3173-3177.

引证文献7

二级引证文献267

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部