基于ReliefF算法的核主成分特征提取
被引量:1
摘要
入侵检测中特征选择和特征提取是解决特征降维的方法之一。采用基于ReliefF算法的核主成分方法解决特征降维问题,先采用ReliefF算法去除原始特征中与分类不相关的特征,再采用核主成分分析法进行特征提取。实验数据表明:将41个特征变量降维成9个主成分,大大减轻了后续的分类器的工作量,同时也有助于提高分类器的分类精度。
出处
《技术与市场》
2012年第8期17-18,共2页
Technology and Market
参考文献2
-
1Kononenko I. Estimation attributes:Analysis and extensions of RELIEF[A].Catania,Italy:Springer Verlag,1994.171-182.
-
2Wenming Zheng,Cairong Zou,Li Zhao. An Improved Algorithm for Kernel Principal Component Analysis[J].Neural Processing Letters,2005,(01):49-56.
同被引文献22
-
1李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
-
2Schena M,Shalon D,Davis R W,et al.Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J].Science,1995,270(5235):467-470.
-
3Ben-Dor A,Bruhn L,Friedman N,et al.Tissue classification with gene expression profiles[J].Journal of Computational Biology,2000,7(3-4):559-583.
-
4Wu Bin,Shen Ziyin.Analysis of gene expression chip data[J].Chinese Journal of Digest,2006,14(1):68-74.
-
5Yang Aijun,Song Xinyuan.Bayesian variable selection for disease classification using gene expression data[J].Bio-information,2010,26(2):215-222.
-
6Inza I,Larranaga P,Blanc R,et al.Filter versus wrapper gene selection approaches in DNA microarray domains[J].Artificial Intelligence in Medicine,2004,31(2):91-103.
-
7Baldi P,Long A D.A bayesian framework for the analysis of microarray expression data:regularized t-test and statistical inferences of gene changes[J].Bioinformatics,2001,17(16):509-519.
-
8Furey T S,Cristianini N,Duffy N.Support vector machine classification and validation of cancer tissue samples using microarray expression data[J].Bioinformatics,2000,16(10):906-914.
-
9Peng S H,Xu Q H,Fen G X,et al.Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines[J].FEBS Letters,2003,555(2):358-362.
-
10She N Q,Shi W M,Kon G W,et al.A combination of modified particle swarm optimization algorithm and support vector machine for genes election and tumor classification[J].Talanta,2007,71(4):1679-1683.
-
1秦毅,王生铁,张计科.二级倒立摆基于信息融合的模糊控制[J].自动化技术与应用,2007,26(10):10-13. 被引量:8
-
2郭志强,杨杰.基于图像分块的二维投影特征提取能力研究[J].计算机仿真,2010,27(4):228-231.
-
3郭洁,潘静,何宇清,庞彦伟.基于隐式Gabor滤波与PCA的人脸识别算法[J].信息技术,2015,39(10):1-3. 被引量:1
-
4熊文真,周娟.基于相空间重构的KPCA-HS-RVM网络流量预测模型[J].荆楚理工学院学报,2016,31(6):35-42. 被引量:2
-
5朱浩悦.一种脱机手写签名认证方法[J].电子设计工程,2009,17(9):39-41.
-
6冯莲子,苟刚.基于PCA的神经网络在文交股票市场中的应用[J].信息与电脑,2016,28(15):59-61. 被引量:1
-
7吴水秀,曾庆鹏,王明文.基于改进ReliefF算法的主成分特征提取方法[J].计算机工程,2008,34(18):51-52. 被引量:3
-
8张涛,吴键.基于PCA和SRC算法的人脸识别储物柜系统的设计与实现[J].自动化与仪表,2017,32(4):9-14. 被引量:3
-
9周云蕾,郭洁畅,朱蓉,林青青,金小菲.基于多特征和支持向量机的风景图像分类[J].计算机系统应用,2016,25(5):135-141. 被引量:2
-
10唐亮,熊蓉,褚健.单样本条件下权重模块2DPCA人脸识别[J].中国图象图形学报,2008,13(12):2307-2313. 被引量:3