期刊文献+

基于ReliefF算法的核主成分特征提取 被引量:1

下载PDF
导出
摘要 入侵检测中特征选择和特征提取是解决特征降维的方法之一。采用基于ReliefF算法的核主成分方法解决特征降维问题,先采用ReliefF算法去除原始特征中与分类不相关的特征,再采用核主成分分析法进行特征提取。实验数据表明:将41个特征变量降维成9个主成分,大大减轻了后续的分类器的工作量,同时也有助于提高分类器的分类精度。
出处 《技术与市场》 2012年第8期17-18,共2页 Technology and Market
  • 相关文献

参考文献2

  • 1Kononenko I. Estimation attributes:Analysis and extensions of RELIEF[A].Catania,Italy:Springer Verlag,1994.171-182.
  • 2Wenming Zheng,Cairong Zou,Li Zhao. An Improved Algorithm for Kernel Principal Component Analysis[J].Neural Processing Letters,2005,(01):49-56.

同被引文献22

  • 1李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 2Schena M,Shalon D,Davis R W,et al.Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J].Science,1995,270(5235):467-470.
  • 3Ben-Dor A,Bruhn L,Friedman N,et al.Tissue classification with gene expression profiles[J].Journal of Computational Biology,2000,7(3-4):559-583.
  • 4Wu Bin,Shen Ziyin.Analysis of gene expression chip data[J].Chinese Journal of Digest,2006,14(1):68-74.
  • 5Yang Aijun,Song Xinyuan.Bayesian variable selection for disease classification using gene expression data[J].Bio-information,2010,26(2):215-222.
  • 6Inza I,Larranaga P,Blanc R,et al.Filter versus wrapper gene selection approaches in DNA microarray domains[J].Artificial Intelligence in Medicine,2004,31(2):91-103.
  • 7Baldi P,Long A D.A bayesian framework for the analysis of microarray expression data:regularized t-test and statistical inferences of gene changes[J].Bioinformatics,2001,17(16):509-519.
  • 8Furey T S,Cristianini N,Duffy N.Support vector machine classification and validation of cancer tissue samples using microarray expression data[J].Bioinformatics,2000,16(10):906-914.
  • 9Peng S H,Xu Q H,Fen G X,et al.Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines[J].FEBS Letters,2003,555(2):358-362.
  • 10She N Q,Shi W M,Kon G W,et al.A combination of modified particle swarm optimization algorithm and support vector machine for genes election and tumor classification[J].Talanta,2007,71(4):1679-1683.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部