摘要
针对传统协同过滤推荐算法的数据稀疏性及恶意行为等问题,提出一种新的基于社会网络的协同过滤推荐算法。该算法借助社会网络信息,结合用户信任和用户兴趣,寻找目标用户最近邻居,并以此作为权重,形成项目推荐,以提高推荐的准确度。实验表明,相对于传统的协同过滤算法,该算法可有效缓解稀疏性及恶意行为带来的问题,显著提高推荐系统的推荐质量。
Aiming at data sparsity and malicious behavior in traditional collaborative filtering algorithm, this paper pres- ents a new algorithm of collaborative filtering based on social network. Depending on social network information, the algo- rithm integrates user' s trust and preference in order to find the nearest neighbors of the target user, which the algorithm uses to compute weight of neighbors and to form item recommendation. Experimental results show that the algorithm can alleviate the sparsity and malicious behaviors problems and achieve a better prediction accuracy than traditional collaborative filtering algorithms.
出处
《现代图书情报技术》
CSSCI
北大核心
2012年第6期54-59,共6页
New Technology of Library and Information Service
关键词
协同过滤
社会网络
重启动随机游走
Collaborative filtering Social network Random walk with restart