期刊文献+

苎麻纤维性能与成纱质量的人工神经网络分析

Analysis of Ramie Fiber Properties and Yarn Quality by Artificial Neural Network
下载PDF
导出
摘要 本文分别采用三种方法-BP神经网络、灰色关联分析结合BP神经网络、主成分结合BP神经网络根据苎麻纤维的性能建立了成纱性能的预测模型。采用灰色关联分析和主成分分析可以减少BP神经网络的输入节点数,提高预测结果的精度和稳定性。与单纯的BP神经网络的预测结果相比,灰色分析结合BP神经网络和主成分分析结合BP神经网络的预测结果更准确,在对成纱性能进行预测时,预测值与实测值之间的平均相对误差均明显下降。 In this paper, three methods, pure BP neural network, grey relational analysis combined with BP neural network and principal component analysis combined with BP neural network were applied to build models of predicting yarn quality on the basis of ramie fiber properties. The last two methods were expected to reduce the input node numbers of BP neural network, and the network structure could be simplified, therefore the prediction accuracy and stability could be improved. Compared with pure BP neural network, the results gotten from the last two methods were both better, the mean relative error between the predicted results and the measured results of ramie yarn quality, such as the strength, strength irregularity, unevenness and neps, were all reduced greatly.
出处 《中国麻业科学》 2012年第4期184-189,共6页 Plant Fiber Sciences in China
基金 现代农业产业技术体系建设专项资金资助 编号:CARS-19
关键词 苎麻 BP神经网络 灰色关联分析 主成分分析 ramie BP neural network grey relational analysis principal component analysis
  • 相关文献

参考文献5

  • 1Zeguang Pei, Chongwen Yu. Prediction of the vortex yarn tenacity from some process and nozzle parameters based on numericalsimulation and artificial neural network [J] . Textile Research Journal, 2011, 0 (00) : 1 -12.
  • 2李晓峰.苎麻纤维原料品质与成纱品质指标的灰关联分析[J].纺织学报,2006,27(1):20-22. 被引量:10
  • 3蔡煜东,姚林声.亚麻纤维品质与成纱质量的人工神经网络分析方法[J].纺织基础科学学报,1993,6(4):307-309. 被引量:2
  • 4Guifen Yao, Jiansheng Guo, and Yongyuan Zhou. Predicting the warp breakage rate in weaving by neural network techniques[J] . Textile Research Journal , 2005, 75 (3): 274-278.
  • 5Daqi Guo, Study on the linear primary function forword three layers neural network' s architecture with teachers, Journal of Computers, Vol. 21, No. 1, 1998, pp. 80 -86.

二级参考文献6

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部