期刊文献+

基于语义的视频检索关键技术综述 被引量:3

A Survey on Semantic-based Video Retrieval Key Techniques
下载PDF
导出
摘要 随着大量视频的出现,视频内容检索是当今多媒体应用的一个重要研究方向。现有的视频检索技术多是基于低层特征,这些低层特征与高层语义概念相差较多,严重影响了视频内容检索系统的实用性。由于低层特征和高层语义概念间的语义鸿沟,如何从视频内容中提取人类思维中的语义概念,正成为目前视频内容检索中最具有挑战性的研究内容。文中介绍了语义视频检索出现的背景和国内外最新研究动态,分析了现有方法的优缺点,对现有的关键技术进行综述。 With the emergence of much video, video content retrieval becomes an active research direction in the multimedia applications. Most of the existing video retrieval technologies are based on low-level features. These features are quite different from the semantic concepts. It seriously influences the practicality of the video content re- trieval system. The gap between low-level features and high semantics is difficult to narrow, so how to extract se- mantic concepts in the human thought from video is becoming a most challenging research of the video content retriev- al. This paper introduces the background of semantic video retrieval and the latest and dynamic research at home and abroad, analyzes the advantages and disadvantages of the existing methods and summarizes the existing key technolo- gles
出处 《电子科技》 2012年第8期150-153,共4页 Electronic Science and Technology
关键词 语义鸿沟 语义视频检索 底层特征 高层语义概念 semantic gas semantic video retrieval low-level features high-level semantic concept
  • 相关文献

参考文献12

二级参考文献200

共引文献89

同被引文献26

  • 1阮海红.视频检索理论与实践[J].浙江传媒学院学报,2009,16(6):78-81. 被引量:1
  • 2谢立信,王宁利.努力打造我国眼科界全新的视频影音电子期刊[J].中华眼科医学杂志(电子版),2011,1(1):1-2. 被引量:2
  • 3余卫宇,谢胜利,余英林,潘晓舟.语义视频检索的现状和研究进展[J].计算机应用研究,2005,22(5):1-7. 被引量:14
  • 4宋颖桃.试论语言表达的局限性[J].沈阳工程学院学报(社会科学版),2006,2(4):520-521. 被引量:3
  • 5Wei W, Liu W Q, Huang M. Quantitative similarity computing for audio effect semantic in video content analy-sis[ C]. Proc of 2th International Conference on Computer Engineering and Technology(ICCET) ,2010:123 - 127.
  • 6Jae-Chang Shim, Chitra Dorai, Ruud Bolle. Automatic Text Extraction from Video for Content-Based Annota- tion and Retrieval[C]. Proc of 14th International conference on Pattern Recognition, 1998:618- 620.
  • 7Mihalcea R F, Mihalcea S I. Word sematic for information retrieval: moving one step closer to the semantic web[C]. Proc of 13th International conference on Tools with Artificial Intelligence, 2001:280- 287.
  • 8Resnik, P. Using information content to evaluate semantic similarity in a taxonomy[ C]. Proc of 14th Inter- national Joint conference on Artificial Intelligence, 1995:448 - 453.
  • 9F, S, C. From temporal expressions to temporal information:Semantic tagging of news message[ C]. Proceed- ings of the workshop on Temporal and spatioal information processing (ACL), Toulouse, France. 2001:65 - 72.
  • 10K, K. On the reliability of unitizing continous data[C]. Sociological Methodology, 1995:47- 76.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部