期刊文献+

双归属环形网络拓扑规划算法设计

Algorithm for Dual-Homing Ring Network Design
下载PDF
导出
摘要 本文研究了一种高效的双归属环形网络拓扑规划算法,提出了在满环与非满环间调整节点的启发式搜索算法,当节点数在1 500个以内时,本算法都能很快求解,而现有算法通常只能处理几百个节点的中等规模网络。本文首先给出了相关数学模型,然后详述了初始拓扑生成过程及采用的启发式优化算法。最后通过将CPLEX规划结果、人工规划结果和算法规划进行比对,验证算法性能。 This paper develops an efficient algorithm to design hierarchical dual-homing ring network. A heuristic algorithm that adjusts nodes between full-rings and non-full rings is presented. The solution can be obtained for up to 1 500 nodes in a small amount of time, while the existing algorithms usually can only handle a few hundred nodes. First this paper presentes the mathematical model, and then details the initial topology generation algorithm and the heuristic algorithm. Finally, the performance of the algorithm is verified through compare the topology with results obtained from the CPLEX and manual design.
出处 《电信科学》 北大核心 2012年第8期69-74,共6页 Telecommunications Science
关键词 双归属 环形拓扑 启发式算法 整数规划 dual-homing, ring topology, heuristic algorithm, integer programming
  • 相关文献

参考文献10

  • 1Kang D, Lee K, Park S, et al. Design of local networks using USHRs. Telecommunication Systems, 2000, 14(1-4): 197~217.
  • 2SHI J, Fonseka J. Hierarchical self-healing rings. IEEE/ACM Transactions on Networking, 1994, 21(4):690- 697.
  • 3SHI J, Fonseka J. Analysis and design of survivable telecommunications networks, IEE Proceedings-Communications, 1997, 144(5): 322~330.
  • 4Kshirsagar K, Kaza K, Rajan K. Design of 2-1eve1 hierarchical ring networks. Proceedings of 3rd International Congress on Ultra Modem Telecommunications and Control Systems and Workshops (ICUMT), Budapest, 2011.
  • 5Thomadsen T, Stidsen T. Hierarchical ring network design using branch-and-price. Telecommunication Systems, 2005, 29(1): 61-76.
  • 6Goldschmidt O, Laugier A, Olinick E. SONET/SDH ring assignment with capacity constraints. Discrete Applied Mathematics, 2003,129(1): 99-128.
  • 7Fortz B, Soriano P, Wynants C. A tabu search algorithm for self-healing ring network design. European Journal of Operational Research, 2003, 151(2):280-295.
  • 8Halit Uster, Sarath K. Algorithms for the design of network topologies with balanced disjoint rings. Journal of Heuristics, 2010, 16(1): 37-63.
  • 9Paula C, Bernard F, Martine L, et al. Improved formulations for the ring spur assignment problem. Proceedings of the 5th International Conference on Network Optimization, Hamburg, Germany, 2011:24-36.
  • 10Pop P C. New integer programming formulations of the generalized travelling salesman problem. American Journal of Applied Sciences, 2007, 4(11):932~937.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部