期刊文献+

玉米大斑病菌转录因子StSte12的活性及其对酵母生长的功能互补分析 被引量:7

Transcription Activity of a Transcription Factor StSte12 from Setosphaeria turcica and Function Analysis Through Yeast Complementation
下载PDF
导出
摘要 【目的】分析玉米大斑病菌StSte12的结构、转录活性及功能。【方法】利用生物信息学方法,对获得的StSte12进行保守结构域和进化树分析,推测该基因的功能;利用β-半乳糖苷酶法检测StSte12的转录活性;将StSTE12转化至酿酒酵母ScSTE12基因缺失突变体ste12Δ中,筛选酿酒酵母ScSTE12的功能互补突变体并对其分析,验证玉米大斑病菌StSTE12的功能。【结果】通过蛋白比对发现StSte12具有转录因子特有的STE homeodomain和ZnF_C2H2锌指结构;同源性分析显示,该基因与其它植物病原真菌的STE12-like基因有较高的同源性;利用β-半乳糖苷酶法检测发现,StSte12具有转录激活活性;酵母互补试验表明,StSTE12可以回复酿酒酵母ste12Δ的功能,能够调控酵母细胞的生长。【结论】玉米大斑病菌StSTE12属于STE12-like基因;转录因子StSte12具有转录活性;对酵母细胞在YPD培养基上的侵入生长有重要的调控作用。 [ Objective ] The objective of this study is to identify the structure characteristics, transcription activity and function ofStStel2 fromSetosphaeriaturcica. [Method]Conservative domain prediction andphylogenetic tree analysis were used to predict the possible function of StSte 12 through bioinformatics analysis. The transcription activity of StSTE12 was tested by fl-galactosidase activity method. Through characterization of growth of the StSTE12 complement transformant, in which StSTE12 was introduced into ScSTE12 null mutant of Saccharomyces ceresivisiae, the function of StSTE12 was preliminarily identified. [ Result ] StSte 12 contained STE homeodomain and ZnF_C2H2 structure, which was the characteristics of Stel2-1ike transcription factor. Sequence analysis revealed that StSTE12 shared highly homology with other STE12-1ike genes of plant pathogens. StStel2 had transcription activation in vitro and could restore the function ofstel2A ofS. ceresivisiae, which regulated invasion growth of the yeast cell. [ Conclusion] Transcription factor StSTE12, a STE12-1ike gene from S. turcica, has a transcription activity and plays an important role in regulating the invasion growth of the cell on YPD medium.
出处 《中国农业科学》 CAS CSCD 北大核心 2012年第16期3281-3287,共7页 Scientia Agricultura Sinica
基金 国家自然科学基金项目(30471126 31171805) 河北省自然科学基金项目(C2009000622 C2010001854)
关键词 玉米大斑病菌 转录因子 StSTE12 侵入生长 Setosphaeria turcica transcription factor StSTE12 invasion growth
  • 相关文献

参考文献25

  • 1Zhao X H, Mehrabi R, Xu J R. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryotic Cell, 2007, 6(10): 1701-1714.
  • 2Rispaila N, Soanes D M, Ant C, Czajkowski R, Griinler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage A A, Gow N A R, Kahmann R, Lebrun M H, Lenasi H, Perez-Martin J, Talbot N, Wendland J, Pietro A D. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genetics and Biology, 2009, 46(4): 287-298.
  • 3Roman E, Arana D M, Nombela C, Alonso-Monge R, Pla J. MAP kinase pathways as regulators of fungal virulence. Trends in Microbiology, 2007, 15(4): 181-190.
  • 4Guo J, Dai X, Xu J R, Wang Y, Bai E Liu F, Duan Y, Zhang H, Huang L, Kang Z. Molecular characterization of a Fus3/Kssl type MAPK from Puccinia striiformis f. sp. tritici, PsMAPK1. PLoS ONE, 2011, 6(7): e21895.
  • 5Takano Y, Kikuchi T, Kubo Y, Hamer J E, Mise K, Furusawa I. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Molecular Plant Microbe Interaction, 2000, 13(4): 374-383.
  • 6Good M, Tang G. Singleton J, Remenyi A, Lim W A. The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Cell, 2009, 136(6): 1085-1097.
  • 7Hoi J W S, Dumas B. Stel2 and Stel2-Like proteins, fungal transcription factors regulating development and pathogenicity. Eukaryotic Cell, 2010, 9(4): 480-485.
  • 8Rispail N, Pietro A D. The homeodomain transcription factor Stel2: connecting fungal MAPK signalling to plant pathogenicity. Communicative and Integrative Biology, 2010, 3(4): 327-332.
  • 9Errede B, Ammeter G Ste12, a protein involved in cell-type-specific transcdptinn and signal transductinn in yeast, is part of protein-DNA complexes. Genes and Development, 1989, 3: 1349-1361.
  • 10Park G, Xue C, Zheng L, Lain S, Xu J R. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Molecular Plant Microbe Interaction, 2002, 15(3): 183-192.

二级参考文献51

  • 1范永山,刘颖超,谷守芹,桂秀梅,董金皋.植物病原真菌的MAPK基因及其功能[J].微生物学报,2004,44(4):547-551. 被引量:23
  • 2杨帆,刘瑞瑞,林俊芳,郭丽琼.草菇gpd启动子的克隆及序列分析[J].热带作物学报,2004,25(4):72-77. 被引量:10
  • 3张忠芳,李鸿雁,杨丽娜,董志恒,刘娅,范哲.人肥胖基因的克隆与原核表达载体的构建[J].吉林大学学报(医学版),2005,31(4):512-515. 被引量:5
  • 4左正宏,李博文,聂鑫怡,王重刚,陈奕欣.坛紫菜别藻蓝蛋白α亚基基因的原核表达与鉴定[J].水生生物学报,2006,30(3):323-326. 被引量:2
  • 5Perkins J M, Pederson W L. Disease development and yield losses associated with northern leaf blight on corn. Plant Disease, 1987, 71 (10): 940-943.
  • 6Lengeler K B, Davidson R C, D'Souze C, Harashima T, Shen W, Wang P, Pan X, Waugh M, Heitman J. Signal transduetion cascades regulating fungal development and virulence. Microbiology and Molecular Biology Reviews, 2000, 64(4): 746-785.
  • 7Westfal! P J, Patterson J C, Chen R E, Thomer J. Stress resistance and signal fidelity independent of nuclear MAPK function. Proceedings of the National Academy of Sciences of the USA, 2008, 105(34): 12212-12217.
  • 8Brunet A, Pouyssegur J. Identification of MAP kinase domains by redirecting stress signals into growth factor responses. Science, 1996, 272(5268): 1652-1655.
  • 9Moriwaki A, Kihara J, Mori C, Arase S. A MAP kinase gene, BMKI, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Microbiological Research, 2007, 162: 108-114.
  • 10Cousin A, Mehrabi R, Guilleroux M, Dufresne M, van der Lee T, Waalwijk C, Langin T, Kema G H J. The MAP kinase-encoding gene MgFus3 of the non-appressorium phytopathogen Myeosphaerella graminicola is required for penetration and in vitro pycnidia formation Molecular Plant Pathology, 2006, 7(4): 269-278.

共引文献11

同被引文献101

  • 1Rovers MM,Schilder AG,Zielhuis GA,Rosenfeld RM,张江平,杨妙丽,张全安.中耳炎[J].国外医学(耳鼻咽喉科学分册),2005,29(3):141-143. 被引量:427
  • 2孙淑琴,温雷蕾,董金皋.玉米大斑病菌的生理小种及交配型测定[J].玉米科学,2005,13(4):112-113. 被引量:59
  • 3刘国胜,董金皋,邓福友,郭爱国,张凤国,臧漫辉.中国玉米大斑病菌生理分化及新命名法的初步研究[J].植物病理学报,1996,26(4):305-310. 被引量:48
  • 4Romeis T. Protein kinases in the plant defence response. CurrentOpinion in Plant Biology, 2001,4: 407-414.
  • 5Lengeler K B, Davidson R C, D'souza C, Harashima T, Shen W C,Wang P, Pan X, Waugh M, Heitman J. Signal transduction cascadesregulating fungal development and virulence. Microbiology andMolecular Biology Reviews, 2000, 64(4): 746-785.
  • 6Xu J R. MAP kinases in fungal pathogens. Fungal Genetics andBiology, 2000,31: 137-152.
  • 7Rispail N, Di Pietro A. The homeodomain transcription factor Stel2Connecting fungal MAPK signalling to plant pathogenicity.Communicative and Integrative Biology, 2010, 3⑷: 327-332.
  • 8Zeitlinger J, Simon I,Harbison C T, Hannett N M, Volkert T L, FinkG R, Young R A. Program-specific distribution of a transcriptionfactor dependent on partner transcription factor and MAPK signaling.Cell, 2003,113:395-404.
  • 9Pitoniak A, Birkaya B,Dionne H M, Vadaie N, Cullen P J. Thesignaling mucins Msb2 and Hkrl differentially regulate thefilamentation mitogen-activated protein kinase pathway and contributeto a multimodal response. Molecular Biology of the Cell,2009, 20:3101-3114.
  • 10Park Q Xue C, Zheng L, Lam S, Xu J R. MST12 regulates infectiousgrowth but not appressorium formation in the rice blast fungusMagnaporthe grisea. Molecular Plant-Microbe Interaction, 2002,15(3): 183-192.

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部