期刊文献+

复合材料层合板的声辐射模态幅值分析 被引量:1

Analyses for acoustic radiation mode amplitude of laminated composite plates
原文传递
导出
摘要 低频时,控制振动结构第一阶声辐射模态伴随系数可有效控制总声功率。通过分层有限元模型可以求解层合板的位移模式。对层合板的固有频率和动态响应进行了理论推导。结合声辐射模态理论,研究了层合板铺设角度、弹性模量比、跨厚比以及阻尼比等结构参数对层合板结构第一阶声辐射模态伴随系数的影响。计算结果表明,分层理论结合有限元方法可以较准确地计算层合板固有频率,而且铺设角度和跨厚比对层合板结构声辐射模态影响较大。 Controlling the adjoint coefficient of the first order acoustic radiation mode of vibrating structure can reduce efficiently the total sound power at low frequency.The displacement of laminated composite plates can be obtained by using layerwise finite element models.A preliminary study was conducted for the natural frequency and dynamic response of the laminated composite plates.Based on the acoustic radiation mode,the effects of panel orientation angle,elastic modulus ratio,width-depth ratio and damping ratio on the adjoint coefficient of the first order acoustic radiation mode of the laminated composite plates were discussed.The results show that the natural frequency of laminated composite plates can be analyzed accurately by using the layerwise finite element models.The effects of panel orientation angle and width-depth ratio on the adjoint coefficient of the acoustic radiation mode of the laminated composite plates are significant.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2012年第4期210-216,共7页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(10962006) 航空科学基金(2011ZA56002)
关键词 层合板 固有频率 声辐射 噪声控制 数值分析 laminated composite plates; natural frequency; acoustic radiation; noise control; numerical analysi;
  • 相关文献

参考文献16

二级参考文献58

共引文献125

同被引文献17

  • 1中国科学院北京力学研究所,固体力学研究室板壳组.夹层板壳的弯曲、稳定和振动[M].北京:科学出版社,1977
  • 2Hu H, Belouettar S, Potier-Ferry M, Daya E M. Re view and assessment of various theories for modeling sandwich composites[J]. Composite Structures, 2008, 84(3) :282-292.
  • 3Sarath Babu C, Kant T. Two shear deformable finite element models for buckling analysis of skew fiber- reinforced composite and sandwich panels[J]. Com- posite Structures, 1999,46(2) : 115-124.
  • 4Birman V, Bert C W. On the choice of shear correction factor in sandwich structures[J]. Journal of Sandwich Structures and Materials,2002,4(1):83-95.
  • 5Reddy J N, Phan N D. Stability and vibration of iso- tropic, orthotropic and laminated plates according to a higher-order shear deformation theory [J]. Journal of Sound and Vibration, 1985,98(2) : 157-170.
  • 6Nayak A K, Moy S S J, Shenoi R A. A higher order fi nlte element theory for buckling and vibration analy- sis of initially stressed composite sandwich plates[J]. Journal of Sound and Vibration, 2005,286 (4) : 763- 780.
  • 7Pokharel N, Mahendran M. Finite element analysis and design of sandwich panels subject to local buck- ling effects[J]. Thin-Walled Structures, 2004,42 (4) : 589-611.
  • 8Reddy J N. Mechanics of Iaminated Composite Plates and Shells: Theory and Analysis[M]. 2nd ed. Boca Raton : CRC Press, 2004 : 725-730.
  • 9Pandit M K, Singh B N, Sheikh A H. Buckling of lam- inated sandwich plates with soft core based on an im- proved higher order zigzag theory [J]. Thin-Walled Structures, 2008,46 ( 11 ) : 1183-1191.
  • 10Bathe K J ,Dvorkin E N. A four-node plate bending el ement based on Mindlin/Reissner plate theory and a mixed interpolation[J]. International Journal for Nu- merical Methods in Engineering, 1985, 21 (2): 367- 383.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部