期刊文献+

基于CFD技术的太阳能污泥干燥室内热湿环境研究

Study on thermal and moisture environment in solar sludge drying room based on CFD
下载PDF
导出
摘要 基于传热传质理论,建立一种太阳能污泥干燥室内热湿耦合传递的数学模型。综合考虑空气流动以及对流和辐射传热。利用CFD软件Fluent的k-ε湍流模型、组分输运模型及辐射模型,初步分析了在太阳辐射条件下不同干燥室结构、排风形式以及通风量对太阳能污泥干燥室内干燥区域的温度、相对湿度以及速度分布的影响。模拟结果表明:干燥室内温、湿度模拟值与实测值吻合较好,平均相对误差分别为3.55%和5.39%。对比分析不同结构下干燥室内的流场分布,两出口排风形式的太阳能污泥干燥室可以形成良好的干燥微环境。当两出口排风风速≥5m/s时.室内干燥区域温度高于室外环境温度,同时相对湿度低于室外环境相对湿度,且增大出流风速,在干燥区域内空气扰流强度增强,有利于干燥室内污泥水分的蒸发。 Based on the theory of heat and mass transfer, a mathematical model of coupled heat and moisture transfer in solar drying room of sludge was established. This model is developed to preliminary analysis the temperature, relative humidity and velocity of distribution influenced by the different structure of drying room, ventilation forms and ventilation flux in solar drying room for sludge on the condition of solar radiation by comprehensive considering air flow, heat transfer in convection and radiation, using k-ε turbulence models, species transport models and radiation models in Fluent. The results of the developed mathematical model are good agreement with the experimental results and the relative error of temperature and humidity are 3.55% and 5.39% between simulation and experiment, respectively. Contrast analysis of the flow field in the different structure of solar drying room, the solar sludge drying room of two outlets of exhaust can form a good dry micro-environment. When the flow velocity is not less than 5 m/s of two outlets of the exhaust model, the temperature is not lower than the outdoor temperature and relative humidity is not higher than the outdoor RH in the indoor dry areas. Meanwhile, the air turbulence intensity of the dry region increases with the flow velocity, which can promote the evaporation of sludge.
出处 《可再生能源》 CAS 北大核心 2012年第8期15-19,共5页 Renewable Energy Resources
基金 科技型中小企业技术创新基金(09C26213200875)
关键词 阳光房 CFD 温度 湿度 污泥干燥 greenhouse CFD temperature humidity sludge drying
  • 相关文献

参考文献14

  • 1李雪松,张锋,刘愚.污泥处理处置技术新进展及发展趋势[J].天津建设科技,2009,19(4):41-43. 被引量:15
  • 2MARYLA SMOLLEN. Evaluation of municipal sludge drying and dewatering with respect to sludge volume re- duction [J]. Water ScienceTeclmology, 1991,22 (12) : 153-161.
  • 3谢钦.真空式污泥处理干化床实验研究[J].福建建筑,2007(11):102-104. 被引量:2
  • 4A IDRIS, K KHALID, W OMAR. Drying of silica sludge using microwave heating [J]. Applied Thermal Engi- neering, 2004,24: 905-918.
  • 5LUCIE HOUDKOVA,JAROSLAV BORAN,VLADIMIR UCEKAJ,et al.Thermal processing of sewage sludge-I1 [J]. Applied Thermal Engineering, 2008,28 : 2083 - 2088.
  • 6李爱民,曲艳丽,陈满堂,李润东.污水污泥干燥特性的实验研究[J].燃烧科学与技术,2003,9(5):404-408. 被引量:20
  • 7施明恒,王希麟,左然.可再生能源概论[M].北京:机械工业出版社.2007.
  • 8V L MATHIOUDAKIS,A G KAPAGIANNIDIS,E ATHANASOULIA, et al. Extended dewatering of sewage sludgein solar drying plants [J]. Desalination, 2009,24 (8) :733-739.
  • 9NEZIH KAMIL SALIHOGLU,VEDAT PINARLI,GU- RAY SALIHOGLU. Solar drying in sludge management in Turkey[J]. Renewable Energy, 2007,32 : 1661 - 1675.
  • 10FONT,M F GOMEZ-RICO,A FULLANA. Skin effect in the heat and mass transfer model for sewage sludge dry ing[J]. Separation and Purification Technology, 2011, 77 : 146-161.

二级参考文献55

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部