期刊文献+

广义Lebesgue-Ramanujan-Nagell方程研究的新进展 被引量:8

New Advances on the Generalized Lebesgue-Ramanujan-Nagell Equation
原文传递
导出
摘要 广义Lebesgue-Ramanujan-Nagell方程是数论中一类重要的Diophantine方程.本文介绍了此类方程的近期结果和尚未解决的问题. The generalized Lebesgue-Ramanujan-Nagell equation is an important type of exponential diophantine equations in number theory. In this paper, the recent results and some unsolved problems of the equation are given.
出处 《数学进展》 CSCD 北大核心 2012年第4期385-396,共12页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10771186 No.10971184)
关键词 指数DIOPHANTINE方程 广义Lebesgue—Ramanujan—Nagell方程 解数 exponential diophantine equation generalized Lebesgue-RamanuJan-Nagell equation number of solutions
  • 相关文献

参考文献2

二级参考文献8

  • 1Bilu, Y., Hanrot, G. and Voutier, P.M.(with an appendix by Mignotte, M.), Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 2001, 539: 75-122.
  • 2Bugeaud, Y. and Mignotte, M., On the diophantine equation x^n-1/x-1= y^q with negative x, In: M. A. Bennett, Proceedings of the millennial conference on number theory, 2002, 145-151.
  • 3Cohn, J.H.E., the diophantine equation x^2 + 2^k = y^n, Arch. Math. Basel, 1992, 59(4): 341-344.
  • 4Hua L.-G., Introduction to Number Theory, Berlin: Springer Verlag, 1982.
  • 5Le M.-H., Some exponential diophantine equation I: The equation D1x^2 - D2y^2 = λk^Z, J. Number Theory, 1995, 55(2): 209-221.
  • 6Le M.-H., On the diophantine equation 2^n +px^2 = y^p, Proc. Amer. Math. Soc., 1995, 123(2): 321-326.
  • 7Rabinowitz, S., The solutions of 3y^2 ± 2n = x^3, Proc. Amer. Math. Soc., 1978, 69(3): 213-218.
  • 8Voutier, P.M., Primitive divisors of Lucas and Lehmer sequences, Math. Comp., 1995, 64(5): 869-888.

共引文献4

同被引文献23

引证文献8

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部