期刊文献+

弱分段Koszul模(英文)

Weakly Piecewise-Koszul Modules
原文传递
导出
摘要 任意一个弱分段Koszul模M都被证明存在一个自然的分次子模链0=U_0(?)U_1(?)U_2(?)…(?) U_t=M使得每个商U_i/U_(i-1)都是分段Koszul模.本文的主要目的是建立M和U_i/U_(i-1)的极小分次投射解之间的关系.对n≥0,证明了P_n=⊕_(i=1)~t P_n^i,其中P_*~i→U_i/U_(i-1)→0和P_*→M→0是相应的极小分次投射解,作为其直接推论,有pd(M)=max{pd(U_i/U_(i-1))}成立. It has been proved that for a weakly piecewise-Koszul module M, there is a natural filtration of graded submodules 0 = Uo C_ U1 C U2 C ... CUt = M such that all quotients Ui/Ui-1 are piecewise-Koszul. The main aim of this paper is to establish the relationship of the minimal graded projective resolutions of M and these quotients Ui/Ui-1. t i More precisely, we obtain Pn ≌ +i^t i=1 Pn^i for all n 〉 0, where 7v,i -4 Ui/Ui-1 -4 0 and P, -4-4 M -4 0 are the corresponding minimal graded projective resolutions, which implies easily that pd(M) = max{pd(Ui/Ui-1)}.
作者 吕家凤
出处 《数学进展》 CSCD 北大核心 2012年第4期409-417,共9页 Advances in Mathematics(China)
基金 supported by NSFC(No.11001245 and No.11101288) Zhejiang Province Department of Education Fund(No.Y201016432) Natural Science Foundation of Zhejiang Province(No.Y6110323)
关键词 分段Koszul模 弱分段Koszul模 极小分次投射解 piecewise-Koszul module weakly piecewise-Koszul module minimal graded projective resolution
  • 相关文献

参考文献4

  • 1Cartan, H. and Eilenberg, S., Homological Algebra, Princeton: Princeton Univ. Press, 1956.
  • 2Martlnez-Villa, R. and Zacharia, D., Approximations with modules having linear resolutions, J. Algebra, 2003, 266: 671-697.
  • 3Lii J.F., On modules with piecewise-Koszul towers, Houston J. Math., 2009, 35(1): 185-207.
  • 4Lii J.F., He J.W. and Lu D.M., Piecewise-Koszul algebras, Sci. China, Ser. A, 2007, 50: 1785-1794.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部