摘要
设μ是一个正的R^d上的Radon测度,满足增长条件:存在一个常数C_0>0,使得对任意n∈(0,d],x∈R^d和r>0,μ(B(x,r))≤C_0r^n成立.作者建立了一类满足H(o|¨)rmander型条件的Marcinkiewicz积分在RBMO(μ)上的有界性.
Let # be a positive Radon measure on Rd satisfying the growth condition: μ(B(x, r)) μ(B(x, r)) 〈 Corn for all x C ∈d, r 〉 0, n ∈ (0, d] and some fixed C0 〉 0. The authors establish the boundedness of the Marcinkiewicz integrals with the kernel satisfying certain H6rmander- type condition on RBMO(μ).
出处
《数学进展》
CSCD
北大核心
2012年第4期447-454,共8页
Advances in Mathematics(China)
基金
supported by NSFC(No.10861010)
supported by Doctoral Start-up Funding of Xinjiang University(No.BS090109)
NSFC(No.11001234)