期刊文献+

Marcinkiewicz积分在RBMO上的有界性(英文)

Boundedness of Marcinkiewicz Integrals on RBMO
原文传递
导出
摘要 设μ是一个正的R^d上的Radon测度,满足增长条件:存在一个常数C_0>0,使得对任意n∈(0,d],x∈R^d和r>0,μ(B(x,r))≤C_0r^n成立.作者建立了一类满足H(o|¨)rmander型条件的Marcinkiewicz积分在RBMO(μ)上的有界性. Let # be a positive Radon measure on Rd satisfying the growth condition: μ(B(x, r)) μ(B(x, r)) 〈 Corn for all x C ∈d, r 〉 0, n ∈ (0, d] and some fixed C0 〉 0. The authors establish the boundedness of the Marcinkiewicz integrals with the kernel satisfying certain H6rmander- type condition on RBMO(μ).
出处 《数学进展》 CSCD 北大核心 2012年第4期447-454,共8页 Advances in Mathematics(China)
基金 supported by NSFC(No.10861010) supported by Doctoral Start-up Funding of Xinjiang University(No.BS090109) NSFC(No.11001234)
关键词 MARCINKIEWICZ积分 非双倍测度 RBMO(μ) Marcinkiewicz integral non-doubling measure RBMO(μ)
  • 相关文献

参考文献2

二级参考文献9

  • 1DING Yong, LU Shanzhen & ZHANG PuDepartment of Mathematics, Beijing Normal University, Beijing 100875, China,Department of Information and Computing Science, Zhejiang Institute of Science and Technology, Hangzhou 310033, China.Weighted weak type estimates for commutators of the Marcinkiewicz integrals[J].Science China Mathematics,2004,47(1):83-95. 被引量:25
  • 2Zhang Pu,Wu Huoxiong.WEAK TYPE(H^1 ,L^1) ESTIMATE FOR COMMUTATOR OF MARCINKIEWICZ INTEGRAL[J].Applied Mathematics(A Journal of Chinese Universities),2005,20(4):455-461. 被引量:2
  • 3Tolsa X.Cotlar's inequality and existence of principal values for the Cauchy integral without doubling conditions,J Reine Angew Math,1998,502:199-235.
  • 4Tolsa X,BMO,H1 and Calderon-Zygmund operators for non doubling measures,Math Ann,2001,319(1):89-149.
  • 5Wang S L.Some properties about g function,Science in China Ser A,1984(10):890-899.
  • 6Nazarov F,Treil S,Volberg A.Weak type estimates and Cotlar inequalities for Calderon-Zygmund operators in nonhomogeneous spaces,Int Math Res Not,1998(9):463-487.
  • 7Peetre,J.On convolution operators leaving L^p,λ spaces invariant,Ann Mat Pure Appl,1966,72:295-304.
  • 8Stein E M.Harmonic Analysis.Real-Variable Methods,Orthogonality,and Oscillatory Integrals,Princeton:Princeton Univ Press,1993.
  • 9Yong Ding Department of Mathematics, Beijing Normal University, Beijing 100875, P. R. China Dashan Fan Department of Mathematics, Anhui University and University of Wisconsin-Milwaukee. MW 53201 USA Yibiao Pan Department of Mathematics, University of Pittsburgh. Pittsburgh. Pennsylvania 15260. USA.L^p-Boundedness of Marcinkiewicz Integrals with Hardy Space Function Kernels[J].Acta Mathematica Sinica,English Series,2000,16(4):593-600. 被引量:89

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部