期刊文献+

智能参数学习的模糊决策树算法 被引量:1

Fuzzy decision tree induction based on optimization of parameters
下载PDF
导出
摘要 模糊决策树算法在处理数量型属性的数据时,需要进行数据模糊化预处理。但是,每个数量型属性应该模糊化为几个语言项通常要凭经验设定的,目前还没有使用标准粒子群优化算法(PSO)自动设定语言项个数的研究。提出使用PSO确定语言项个数的模糊决策树算法(FDT-K算法),通过实验证明FDT-K算法产生的模糊决策树性能明显优于凭经验设定语言项个数所产生的模糊决策树。 Fuzzy Decision Tree induction(FDT)has been used in more and more application area.When the data are numerical,the FDT algorithms need to fuzzify them into some linguistic items.That how many linguistic items of an attribute are proper is not known.The selection generally depends on experts’opinion or people’s common.Currently,it is not yet available to learn the number of linguistic items by using the experimental method of particle swarm optimization.The paper introduces a PSO based approach to optimize the selection of linguistic item’s number in fuzzifying processing of data in FDT(FDT-K algorithm).Experimental studies show that the FDT-K algorithm compared with the people’s common methods to decide the number of linguistic items of attribute can create a better fuzzy decision tree with higher classification and generalization capability.
作者 孙娟
出处 《计算机工程与应用》 CSCD 2012年第23期148-154,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.10804025) 河北省自然科学基金(No.F2010000318)
关键词 归纳学习 模糊决策树 数据预处理 模糊化 粒子群优化算法 inductive learning fuzzy decision tree data preprocessing fuzzification particle swarm optimization
  • 相关文献

参考文献13

  • 1HanJiawei,KamberM.数据挖掘概念与技术[M].范明,孟小峰,译.2版.北京:机械工业出版社,2007.
  • 2Quinlan J R.C4.5 program for machine leaming[M].San Mateo, Calif: Morgan Kaufmann, 1993.
  • 3Wang Xi-Zhao, Zhai Jun-Hai, Lu Shu-Xia.Induction of multiple fuzzy decision trees based on rough set tech- nique[J].Information Sciences,2008,178:3188-3202.
  • 4Yuan Y, Shaw M J.Induction of fuzzy decision trees[J]. Fuzzy Sets Systems, 1995,69(2) : 125-139.
  • 5Janikow C Z.Fuzzy decision tree:issues and methods[J]. IEEE Transactions on System, Man, and Cybernetics-Part B: Cybernetics, 1998,28( 1 ) : 1-14.
  • 6Chang Pei-Chann,Fan Chin-Yuan,Dzan Wei-Yuan.A CBR- based fuzzy decision tree approach for database classifi- cation[J].Expert Systems with Applications, 2010,37.
  • 7Fan Chin-Yuan, Chang Pei-Chann, Lin Jyun-Jie, et al.Ahybrid model combining case-based reasoning and fuzzy decision tree for medical data classification[J].Ap- plied Soft Computing, 2011,11 .. 632-644.
  • 8Kohonen T.Self-organizing maps[M].New York:Springer- Verlag, 2001.
  • 9王熙照,谢凯.基于聚类的数据预处理对模糊决策树产生的影响[J].计算机工程与应用,2006,42(1):156-158. 被引量:3
  • 10Pulkkinen P, Koivisto H.Fuzzy classifier identification using decision tree and multiobjective evolutionary al- gorithms[J].Intemational Journal of Approximate Rea- soning, 2008,48 : 526-543.

二级参考文献13

  • 1Quinlan J R.Induction of Decision Trees[J],Machine Learning, 1986: 81-106.
  • 2Quinlan J R.Decision trees at probabilistic classifier[C].In..Proc 4th International workshop on machine learning,Morgan Kaufmann ,Los Altos, CA, 1987 : 31-37.
  • 3Quinlan J R.Probabilistic Decision Trees[J].Machine Learning, 1990; (3) : 140-152.
  • 4L A Zadeh.Fuzzy Sets as a bases for a theory of possibility[Jl.Fuzzy Sets and Systems, 1978;(1):3-38.
  • 5Yufei Yuan,Michael J Shaw.Induction of fuzzy decision trees[J].Fuzzy Sets and Systems, 1995 ; 69 : 125-139.
  • 6T Kohonen,Self-Organization and Associative Memory[M].Springer, Berlin, 1988.
  • 7The Self-Organizing Map Program Package.http://www.cis.hut.fi/research/som_pak/.
  • 8Yeung D S,Ha M H,Wang X Z.On the handling of Interaction in Fuzzy Production Rule reasouing[J].IEEE,2004.
  • 9UCI Repository of Machine Learning Databases and Domain The ories[Online].Available ftp ://ftp.ics.uci.edu/pub/machine-learning databases.
  • 10Tom M Mitchell.Machine learning[M].Beijing:China Machine Press, 2003.

共引文献3

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部