期刊文献+

重塑黏土次固结性状的变化规律与定量评价 被引量:8

Variation law and quantitative evaluation of secondary consolidation behavior for remolded clays
下载PDF
导出
摘要 通过对6种不同的天然沉积土重塑样进行一维压缩次固结试验,明确了重塑黏土次固结变形的主要影响因素为孔隙比与对应于液限的孔隙比,得出了重塑黏土的次固结系数随着固结压力的增大和孔隙比的减小而减小,且相同孔隙比下次固结系数随液限的增大而增大的规律。定义了ln(1+e)-lnt双对数坐标下的次固结系数CαL,提出了双对数坐标次固结系数与液限孔隙比的定量关系表达式,为重塑黏土提供了简便实用的次固结变形计算方法,也为进一步完善Burland等提出的固有压缩概念与压缩理论奠定试验基础。 Oedometer and secondary consolidation tests were performed on six remolded clays with a wide spectrum of liquid limits to investigate the secondary consolidation behavior. It is understood that the void ratio and the void ratio at liquid limit are the controlling factors in the secondary deformation analysis. This study also makes it clear that the coefficient of the secondary consolidation decreases with the decrease in the void ratio, and increases with the increase in the liquid limit under the same void ratio. A new definition of the coefficient of secondary consolidation is given in the bilogarithmic ln(l+e)-logt plot. The quantitative evaluation of the relationship between the secondary consolidation coefficient in the bilogarithmic plot and the void ratio at the liquid limit (eL) is also proposed. A simple method for predicting the settlement of the secondary consolidation for remolded clays is also recommended.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2012年第8期1496-1500,共5页 Chinese Journal of Geotechnical Engineering
基金 国家自然科学基金项目(41102168 41172240)
关键词 一维压缩 重塑黏土 时间效应 次固结系数 液限 one-dimensional consolidation remolded clay time effect coefficient of secondary consolidation liquid limit
  • 相关文献

参考文献22

  • 1LEROUEIL S, TAVENAS F, BRUCY F, et al. Behavior of destructured natural clays[J]. Joumal of the Geotechnical Engineering Division, 1979, 105(6): 759 - 778.
  • 2BURLAND J B. On the compressibility and shear strength of natural clays[J]. G6otechnique, 1990, 40(3): 329-378.
  • 3HIGHT D W, BOND A J, LEGGE J D. Characterization of the Bothkennar clay: an overview[J]. G6otechnique, 1992, 42(2): 303 - 347.
  • 4HONG ZS, HAN J. Evaluation of sample quality of sensitive clay using intrinsic compression concept[J]. Journal ofGeotechnical and Geoenvironmental Engineering, ASCE. 2007, 133(1): 83 - 90.
  • 5HONG Z S, YIN J, CUI Y J. Compression behaviour of reconstituted soils at high initial water contents[J]. G6otechnique, 2010: 60(4): 691 - 700.
  • 6BJERRUM L. Engineering geology of normally consolidated marine clays as related to the settlement of buildings[J]. G6otechnique, 1967, 17(2): 83 - 118.
  • 7YIN J H, GRAHAM J. Viscous-elastic-plastic modeling of one-dimensional time-dependent behaviour of clay[J]. Canadian Geotechnical Journal, 1989, 26(1): 199 - 209.
  • 8殷宗泽,张海波,朱俊高,李国维.软土的次固结[J].岩土工程学报,2003,25(5):521-526. 被引量:157
  • 9MESRI G, GODLEWSKI P M. Time and stress- compressibility interrelationship[J]. Journal of Geotechnical Engineering Division, ASCE, 1977, 103(5): 417 - 430.
  • 10MESRI G, STARK T D, AJLOUNI M A, et al. Secondary compression of peat with or without surcharging[J]. Geotechnical Engineering, ASCE, 1997, 123(5): 411 - 421.

二级参考文献18

  • 1洪振舜,立石义孝,邓永锋.天然硅藻土的应力水平与孔隙空间分布的关系[J].岩土力学,2004,25(7):1023-1026. 被引量:22
  • 2.JTJ017-96.公路软土地基路堤设计与施工技术规范[S].,..
  • 3[1]Leroueil S, Vaughan P R. The general and congruent effects of structure in natural soils and weak rocks[J]. Geotechnique, 1990, 40: 467-488.
  • 4[2]Hong Z, Tsuchida T. On compression characteristics of Ariake clays[J]. Canadian Geotechnical Journal, 1999,36(5): 807-814.
  • 5[3]Leroueil S, Tavenas F, Brucy F, La Rochelle P, Roy M.Behavior of destructured natural clays[J]. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, 1979, 105(6): 759-778.
  • 6[7]Burland J B. On the compressibility and shear strength of natural clays [J]. Geotechnique, 1990, 40: 329-378.
  • 7[8]Torrance J K, Ohtsubo M. Ariake Bay quick clays: A comparison with general model[J]. Soils and Foundations,1995, 35(1): 11-19.
  • 8[9]Ariake Bay Research Group. Quaternary System of the Ariake and the Shiranui Bay Areas with Special Reference to the Ariake clay[M]. Japan: The Association for the Geological Collaboration in Japan, 1965. 1-86.
  • 9[10]Hong Z, Onitsuka K. A method of correcting yield stress and compression index of Ariake clays for sample disturbance[J]. Soils and Foundations, 1998, 38(2): 211-222.
  • 10[11]Fujikawa T, Takayama M. Physical properties of Ariake marine clays [J]. Transactions of Japanese Society of Irrigation, Drainage and Reclamation Engineering,1980, 88:51 -61.

共引文献173

同被引文献136

引证文献8

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部