2Astrom K J, Hagglund T. PID Controller: Theory, Design, and Tunning, 2nd Edition [ M ]. Research Triangle Park. North Carolina: Instrument Society of America, 1995.
3Guo Q z, Kang D L, Yu X D,et al. Binary-coded extremal optimization for the design of PID controllers [ J ]. Neuro- computing, 2014,138 ( 22 ) : 180 - 188.
4Leandro d S C, Marcelo W P. A tuning strategy for muhiva- riable PI and PID controllers using differential evolution combined with chaotic Zaslavskii map [ J ]. Expert Systems with Applications, 2011,38 ( 11 ) : 13694 - 13701.
5A K Qin, V L Huang, P N Suganthan. Differential Evolu- tion Algorithm With Strategy Adaptation for Global Numeri- cal Optimization [ J ]. IEEE Transactions on Evolutionary Computation,2009,13 : 398 - 417.
6K V Price, R M Storn, J A Lampinen. Differential evolution: a practical approach to global optimization[ D]. Berlin :Nat- ural Computing Series, Springer,2005.
7R Storn, K Price. Differential evolution a simple and effi- cient heuristic for global optimization over continuous spaces [ J]. J. Global Optimization, 1997,11:341 - 359.
8K V Price, R M Storn, J A Lampinen. Differential Evolu- tion: A Practical Approach to Global Optimization [ M ]. 1st ed. New York : Springer - Vedag, 2005.
9B V Babu, M M L Jehan. Differential evolution for multiob- jective optimization[C]. In Proc. IEEE Congr. Evol. Com- put. ,2003,12:2696 - 2703.
10R Gamperle, S D Muller, P Koumoutsakos. A parameter study for differential evolution [ C ]. In Proc. Advances In- tell. Syst. , Fuzzy Syst. , Evol. Comput. , Crete, Greece, 2002,293 - 298.