期刊文献+

基于有穷损害优先法求解组合拍卖竞胜标问题研究 被引量:1

Solution to the Winner Determination Problem in Combinatorial Auctions By Finite Injury Priority Method
下载PDF
导出
摘要 迄今为止,组合拍卖竞胜标问题并不存在一个多项式时间复杂度的算法,其计算复杂性与拍卖效率之间的矛盾一直是影响组合拍卖广泛应用的主要障碍。它是一个NP难问题,也是组合拍卖机制设计中的难题之一。而有穷损害优先方法是纯粹递归论中的一个十分重要的现代方法,特别对NP难问题求解算法的设计,对研究依复杂度决定的偏序结构的构造是一个很基本的有用工具。因此,本文提出根据组合拍卖的内在特性,将各不同的拍卖商品按照拍卖机制的要求,并结合其自身的协同价值等因素,设定一个优先序,然后采用有穷损害优先法有效有序地解决。 So far, the winner determination problem in combinatorial auctions has not had a polynomial time complexity algorithm. It is an NP-hard problem. The finite injury priority method is one of the very important modern methods in recursion theory. In particular, it is a very useful tool or designing the NP-hard problem solving algorithm according to the complexity of the of the partial order structure. So, an approximate algorithm is proposed for solving the well-known NP hard problem-the winner determination problem in combinatorial auctions.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2012年第3期144-147,共4页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70572023) 黑龙江省自然科学基金资助项目(zd200803-01)
关键词 组合拍卖 竞胜标确定 NP难问题 有穷损害优先法 combinatorial auctions the winner determination problem NP-hard problem finite injury priority method
  • 相关文献

参考文献13

  • 1黄文奇,许如初.近世计算理论导引--NP难度问题的背景、前景及其求解算法研究[M].科学出版社,2004.
  • 2杨东屏,李昂生.可计算理论[M].科学出版社,1999.
  • 3Sandholm T. Algorithm for optimal winner determination in combinatorial auctions[ J ]. Artificial intelligence, 2002, 135 (1- 2): 1-54.
  • 4Aleksandar Pekee, Michael Rothkopf H. Combinatorial auction designs[J]. Management Science, 2003, 49( 11 ) : 148.5-1503.
  • 5Sven de Vries, Rakesh Vohra V. Combinatorial auctions: a survey[ J]. Informs Journal on Computing, 2003, 15 (3) : 284-309.
  • 6Bothkopf M H, Aleksandar Pekee, Ronald Harstard M. Computationally manageable combinational auctions[ J]. Management Science, 1998, 44(8) : 1131-1147.
  • 7Peter Cramton. Yoav Shoham, Richard steinberg[C ]. Combinatorial auctions, the MIT Press, 2(106.
  • 8Sandholm T. Approaches to winner determination in combinatorial auctions[ J]. Decision Support Systems, 2000, 28 (1-2) : 165-176.
  • 9Sandholm T, Suri S, Gilpin A, et al. CABOB: A fast, optimal algorithm for winner determinati,~n in combinatorial auctions [ J]. Management Science, 2005, 51 (3) : 374-390.
  • 10Peter Cramton, Yoav Shoham, Richard Steinberg. An overview of combinatorial auctions [ J]. Acre Sigecom Exchanges, 2007. 10(7): 1-12.

二级参考文献10

  • 1陈培友,汪定伟.多物品最优组合供应模式确定问题的模型研究[J].中国管理科学,2006,14(4):35-39. 被引量:15
  • 2段海滨.蚁群优化原理及其应用[M].北京:科学出版社,2005.
  • 3Kong M, Tian P, Kao Y. A new ant colony optimization algorithm for the multidimensional knapsack problem[J]. Computers and Operations Research, 2008, 35 (8) : 2672-2683.
  • 4Sandholm T, Suri S, Gilpin A. CABOB: a fast optimal algorithm for winner determination in combinatorial auctions [ J ]. Management Science, 2005, 51 ( 3 ) : 374-390.
  • 5Fujishima Y, Leyton-Brown K, Shoham Y. Taming the computational complexity of combinatorial auctions: optimal and approximate approaches[ C]. Proceedings of the sixteenth International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann Publishers, 1999. 548-553.
  • 6De V S, Vohra R V. Combinatorial auctions: a survey[J].Informs Journal on Computing, 2003, 15 (3): 284-309.
  • 7Bartal Y, Gonen R, Nisan N. Incentive compatible alulti unit combinatorial auctions[ C]. Proceedings of the 9th conference on theoretical aspects of rationality and knowledge. New York, USA: ACM Press, 2003. 72-87.
  • 8Gonen R, Lehmann D. Optimal solutions for multi-unit combinatorial auctions: branch and bound heuristics[ C ]. Proceedings of the 9th conference on 2nd ACM conference on electronic commerce. New York, USA: ACM Press, 2000. 13-20.
  • 9Feige U, Immorlica N, Mirrokni V. A combinatorial allocation mechanism with penalties for banner advertising[ C]. Proceeding of the 17th international conference on World Wide Web. Beijing,China: ACM Press, 2008. 169-178.
  • 10黄河,徐鸿雁,陈剑.多因素采购组合拍卖获胜者确定问题研究[J].系统工程理论与实践,2008,28(7):27-33. 被引量:16

共引文献2

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部