期刊文献+

离散约束条件下的实用投资组合选择模型 被引量:3

Realistic Portfolio Selection Models with Discrete-type Constraints
下载PDF
导出
摘要 鉴于现实证券市场中的投资会受到很多类型的约束的限制,本文在同时综合反映多种市场摩擦与恰当度量投资风险的原则下,构建了两种分别以CVaR和双边一致性度量为风险度量的离散型多重约束实用投资组合选择模型。基于深圳证券交易所A股的日交易数据,我们从实证角度着重考虑了交易费用约束与逻辑约束对最优投资策略选择及其性能的影响,并给出了一些实用的投资建议。实证结果表明:新模型不仅可行、有效,而且能合理反映不同市场摩擦的作用。 There are many different kinds of investment restrictions in real stock markets. Aimed at comprehensively reflecting various market frictions and properly measuring the investment risk, we construct two new realistic portfolio selection models with several discrete-type constraints by adopting CVaR and the two-sided coherent risk measure as the investment risk measure, respectively. With daily trading data from the Shenzhen stock market, we empirically investigate the influence of the proportional transaction cost constraint and logical constraints on the optimal portfolio selection and its performance. Some useful investment suggestions are then derived from our empirical results. Detailed empirical results and analyses not only show the reasonability and practicality of our new models, but the functions of different market frictions.
作者 陈志平 张峰
出处 《运筹与管理》 CSSCI CSCD 北大核心 2012年第3期159-169,共11页 Operations Research and Management Science
基金 国家自然科学基金(70971109)
关键词 投资学 实用投资组合模型 最优化方法 离散约束 性能评估 investment realistic portfolio selection models optimization method discrete-type constraints performance evaluation
  • 相关文献

参考文献12

  • 1Siddharha S S. A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals[ J]. European Journal of Operations Research, 1998, 108: 196-207.
  • 2Perold A. Large-scale portfolio optimization [ J]. Management Science, 1984, 31 (10) : 1143-1159.
  • 3Hamza F, Janssen J. The mean-semivariances approach to realistic portfolio optimization subject to transaction costs [ J]. Applied Stochastic Models and Data Analysis, 1998, 14: 275-283.
  • 4陈志平,袁晓玲,郤峰.多约束投资组合优化问题的实证研究[J].系统工程理论与实践,2005,25(2):10-17. 被引量:10
  • 5Bartholomew-Biggs M C, Kane S J. A global optimization problem in portfolio selection[J]. Comput Manag Sei, 2009, 6: 329-345.
  • 6Morgan J" P. RiskMetrics-Technical document[ R]. fourth ed. J. P. Morgan, New York, 1996.
  • 7Artzner P, Delbaen F, Eber J M, Heath D. Thinking coherently[J]. Risk, 1997, 10: 68-71.
  • 8Delbaen F. Coherent risk measure on general probability spaces. Advances in finance and stoehastics[ M]. Essays in Honour of Dieter Sondermann. Springer, Berlin, 2002. 1-37.
  • 9Aeerbi C, Tasehe D. On the coherence of expected shortfall[J]. Journal of Banking and Finance, 2002, 26: 278-287.
  • 10Roekafellar R T, Uryasev S. Optimization of conditional value-at-risk[J]. Journal of Risk, 2000, 2(3) : 21-41.

二级参考文献8

  • 1哈利M马科维茨 朱菁 欧阳向军 译.资产组合选择和酱市场的均值-方差分析[M].上海:上海人民出版社,1999..
  • 2Markowitz Harry M. Mean-Variance Analysis in Portfolio Choice and Capital Markets[M].New York: Basil Blackwell Co. , 1987.
  • 3Siddharha Syam S. A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals[J]. European Journal of Operations Research, 1998, 108 : 196-207.
  • 4Perolld Andre F.Large-scale portfolio optimization[J].Management Science,1984,31(10):1143-1159.
  • 5Hamza F,Janssen J.The mean-semivariances approach to realisthic portfolio optimization subject fo transaction costs[J].Applied Dtochastic Models and Data Analysis,1998,14:275-283.
  • 6Fama E.Foundations of Finance[M].Basic Books,New York,1976.
  • 7证券从业人员资格考试考点指南编写组.证券投资分析[M].北京:中国商业出版社,2002..
  • 8陈叔平,李胜宏,吴雄伟.一类投资组合优化问题的求解及实证分析[J].高校应用数学学报(A辑),2000,15A(4):491-498. 被引量:4

共引文献9

同被引文献39

  • 1刘小茂,李楚霖,王建华.风险资产组合的均值—CVaR有效前沿(Ⅱ)[J].管理工程学报,2005,19(1):1-5. 被引量:31
  • 2刘志东.基于Copula-GARCH-EVT的资产组合选择模型及其混合遗传算法[J].系统工程理论方法应用,2006,15(2):149-157. 被引量:35
  • 3方毅,张屹山.跟踪误差下积极资产组合投资的风险约束机制[J].中国管理科学,2006,14(4):19-24. 被引量:9
  • 4Zhu S, Fukushima M. Worst-case conditional value-atrisk with application to robust portfolio management[ J]. Operations Research, 2009, 57 (5) : 1155-1168.
  • 5Briee W, Kerstens K, Jokung O. Mean-variance-skewness portfolio performance gauging: a general shortage function and dual approach [ J]. Management Science, 2007, 53 ( 1 ) : 135-149.
  • 6Yu M, Takahashi S, Inoue H, et al. Dynamic portfolio optimization with risk control for absolute deviation model [J].European Journal of Operational Research, 2010, 201 (2) : 349-364.
  • 7Black F, Litterman R. Global portfolio optimization[ J]. Financial Analysts, 1992, 48(5) : 28-43.
  • 8Li X, Qin Z, Kar S. Mean-variance-skewness model for portfolio selection with fuzzy returns[ J]. European Journal of Operational Research, 2010, 202 ( 1 ) : 239-247.
  • 9Bermudez J D, Segura J V, Vercher E. A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection [ J ]. Fuzzy Sets and Systems, 2012, 188 (1) : 16-26.
  • 10Bhattacharyya R, Kar S, Majumder D D. Fuzzy meanvariance-skewness portfolio selection models by interval analysis[ J]. Computers and Mathematics with Applications, 2011, 61(1) : 126-137.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部