摘要
具体的捕食模型中响应函数是一关键因素。考虑一类齐次Neumann边界条件下带有饱和与竞争项的捕食模型,对其反应扩散方程组及对应的平衡态问题,利用比较原理研究解的耗散性,持久性,借助于最大值原理给出正解的先验估计,得出随着参数的变化非常数正平衡解的不存在性。
In the specific predator-prey model,the response function is a key factor.A predator-prey model with saturation and competition under homogeneous Neumann boundary is considered.By means of the comparision principle,the behavior of the solutions including dissipativeness,constancy are studied.A priori-estimates of positive steady states is given by maximum principle.As some parameters varied,the nonexistence of the nonconstant positive steady solution is proved.
出处
《安徽工业大学学报(自然科学版)》
CAS
2012年第3期265-270,共6页
Journal of Anhui University of Technology(Natural Science)
关键词
饱和与竞争项
捕食模型
耗散性
持久性
先验估计
非常数正平衡解
saturation and competition
predator-prey model
dissipativeness
constancy
priori estimates
non-constant positive solutions