期刊文献+

带有饱和与竞争项的捕食模型

Predator-prey Model with Saturation and Competition
下载PDF
导出
摘要 具体的捕食模型中响应函数是一关键因素。考虑一类齐次Neumann边界条件下带有饱和与竞争项的捕食模型,对其反应扩散方程组及对应的平衡态问题,利用比较原理研究解的耗散性,持久性,借助于最大值原理给出正解的先验估计,得出随着参数的变化非常数正平衡解的不存在性。 In the specific predator-prey model,the response function is a key factor.A predator-prey model with saturation and competition under homogeneous Neumann boundary is considered.By means of the comparision principle,the behavior of the solutions including dissipativeness,constancy are studied.A priori-estimates of positive steady states is given by maximum principle.As some parameters varied,the nonexistence of the nonconstant positive steady solution is proved.
作者 邵翠
出处 《安徽工业大学学报(自然科学版)》 CAS 2012年第3期265-270,共6页 Journal of Anhui University of Technology(Natural Science)
关键词 饱和与竞争项 捕食模型 耗散性 持久性 先验估计 非常数正平衡解 saturation and competition predator-prey model dissipativeness constancy priori estimates non-constant positive solutions
  • 相关文献

参考文献11

  • 1Bazykin A D. Nonlinear dynamics of interacting populations[M].Singapore:World Scientific, 1998.
  • 2Wang M X, Wu Q. Positive solutions of a prey-predator model with predator saturation and competition[J].Journal of Mathematical Analysis and Applications, 2008, 345: 708-718.
  • 3Chen W Y, Wang M X. Qualitative analysis of predator-prey model with Beddington -DeAngelis function response and diffusion[J]. Mathimatical and Computer Modeling, 2005, 42: 31-44.
  • 4Hwang T W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J].Journal of Mathematical Analysis and Applications, 2002, 281: 395-401.
  • 5Liu Z H, Yuan R. Stability and bifurcation in a delayed predator-prey system with Beddington -DeAngelis functional response[J]. lournal of Mathematical Analysis and Applications, 2004, 296: 521-537.
  • 6Cantrell R S, Cosner C. On the dynamics of predator-prey models with Beddington-DeAngelis functional response[J].Journal of Mathematical Analysis and Applications, 2001, 257: 206-222.
  • 7Chen W Y, Peng R. Stationary patterns created by cross-diffusion for the competitor- competitor-mutualist model[J].Journal of Mathematical Analysis and Applications, 2004, 291(2): 550-564.
  • 8CHENWENYAN,WANGMINGXIN.NON-CONSTANT POSITIVE STEADY-STATES OF A PREDATOR-PREY-MUTUALIST MODEL[J].Chinese Annals of Mathematics,Series B,2004,25(2):243-254. 被引量:4
  • 9Hei L J, Yu Y. Non-constant positive steadystates of one resource and two consumers model with diffusion[J].Journal of Mathematical Analysis and Applications, 2008, 339: 566-581.
  • 10Lin C S, Ni W M, Takagi I. Large amplitude stationary solutions to a chemotais systems[J].Journal of Differential Equations, 1988, 72: 1-27.

二级参考文献10

  • 1[6]Rabinowitz, P., Some global results for nonlinear eigenvalue problems, J. Func. Anal., 7(1971), 487-513.
  • 2[7]Rai, B., Freedman, H. I. & Addicott, J. F., Analysis of three species modles of mutualism in predatorprey and competitive systems, Math. Biosc., 65(1983), 13-50.
  • 3[8]Smoller, J., Shock Waves and Reaction-Diffusion Equations, Second edition, Springer-Verlag, New York, 1994.
  • 4[9]Wang, M. X., Non-constant positive steady-states of the Sel'kov model, J. of Differential Equations,190:2(2003), 600-620.
  • 5[10]Zheng, S. N., A reaction-diffusion system of a predator-prey-mutualist model, Math. Biosc., 78(1986),217-245.
  • 6[1]Lin, C. S., Ni, W. M. & Takagi, I., Large amplitude stationary solutions to a chemotais systems, J.Differential Equations, 72(1988), 1-27.
  • 7[2]Ni, W. M., Diffusion, cross-diffusion and their spike-layer steady states, Notices Amer. Math. Soc.,45:1(1998), 9-18.
  • 8[3]Nirenberg, L., Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences,New York, 1973-1974.
  • 9[4]Pang, P. Y. H. & Wang, M. X., Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. of the London Math. Soc., 88:1(2004), 135-157.
  • 10[5]Pang, P. Y. H. & Wang, M. X., Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh A, 133:4(2003), 919-942.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部