摘要
对任意给定的二元连续函数,在R3中运用分形插值迭代函数系生成相应的α-分形函数。研究分形函数与原二元连续函数之间的关系及性质,给出在L2范数及无穷大范数意义下,任一二元连续函数与其分形函数之间的误差估计,得到它们的矩量误差上界。
For any given bivariate continuous function,an α-fractal function in the three-dimensional space is generated with the iterated function system of fractal interpolation.Errors between the α-fractal function and the corresponding continuous function in the sense of L2-norm and infinity norm are estimated.Errors of their moments are also studied,and the error upperbound is obtained.
出处
《安徽工业大学学报(自然科学版)》
CAS
2012年第3期271-275,共5页
Journal of Anhui University of Technology(Natural Science)
基金
南京财经大学科研基金项目(A2011019)
南京财经大学学位与研究生教育课题(Y1028)
关键词
迭代函数系
分形插值函数
矩量
误差估计
iterated function system
fractal interpolation function
moment
error estimation