期刊文献+

关于次高斯随机序列的一类强偏差定理 被引量:1

A Class of Strong Deviation Theorems for Sub-Gaussian Stochastic Sequence
下载PDF
导出
摘要 讨论次高斯随机序列部分和的极限性质,引入相对熵的概念,利用似然比极限性质并与分析方法相结合,推广了关于次高斯随机序列已有的强极限定理,并给出了用不等式表示的一类关于次高斯随机序列的强极限定理,即强偏差定理。 Properties for the partial sum limit of Sub-Gaussian stochastic sequence are discussed.By introducing the concept of relative entropy and using limit inequality of likelihood ratio together with analytic methods,the strong limit theorems about Sub-Gaussian stochastic sequence are extended.Besides,a class of strong limit theorems for Sub-Gaussian stochastic sequence represented with inequalities are given,that is strong deviation theorem.
出处 《安徽工业大学学报(自然科学版)》 CAS 2012年第3期276-279,共4页 Journal of Anhui University of Technology(Natural Science)
基金 安徽工业大学研究生创新基金(2011040)
关键词 次高斯随机序列 似然比 相对熵 强偏差定理 Sub-Gaussian stochastic sequence likelihood ratio relative entropy strong deviation theorem
  • 相关文献

参考文献9

  • 1Gaposhkin V F.The law of large numbers for moving averages of independent random[J].Mathematieheskie Zametki,1987,42(1): 124-131.
  • 2Lai T L.Summability methods for independent identically distributed random variables[J].Proc Amer Math Soc,1974,45(2)253-261.
  • 3Jain N C.Tail probabilities for sums. of independent Banach space valued random variables[J].Z Wahrscheinlichkeitsheorie Verw Gebiete, 1975,33:155-166.
  • 4Mason D M .An extended version of the Erdos-Renyi strong law of large numbers[J] .Ann.Probab., 1989,17(1) :257-265.
  • 5LIU Wen Hebei University of Technology, Tianjin 300130, China.A class of strong deviation theorems and an approach of Laplace transformation[J].Chinese Science Bulletin,1998,43(19):1605-1610. 被引量:12
  • 6范爱华.样本相对熵与相依随机序列的若干小偏差定理[J].兰州大学学报(自然科学版),2008,44(1):128-131. 被引量:5
  • 7汪忠志,杨卫国.关于相依离散随机序列的若干强偏差定理[J].系统科学与数学,2011,31(8):932-942. 被引量:7
  • 8Fan Ai-hua.Somc strong deviation theorems for Jamisontype weighted sums of random sequence[J]. International Journal of Pure and Applied Mathematics,2007,41 (1):51-60.
  • 9Amini M,Bozorgnia A.Sub-Gaussian techniques in proving some strong limit theorems[J].WSEAS Trans Sys,2002,1(1):1-5.

二级参考文献18

  • 1汪忠志,陈文波.任意信源与马氏信源的比较及若干极限性质(英文)[J].兰州大学学报(自然科学版),2005,41(2):128-133. 被引量:1
  • 2Gaposhkin V F. The law of large numbers for moving averages of independent random. Mathe- maticheskie Zametki, 1987, 42(1): 124-131.
  • 3Shepp L A. A limit law concerning moving averages. Ann. Math. Stat., 1964, 35(1): 424-428.
  • 4Lai T L. Summability methods for independent identically distributed random varibles. Proc. Amer. Math. Soc., 1974, 45(2): 253-261.
  • 5Jain N C. Tail probabilities for sums of independent Banach space valued random variables. Z. Wahrscheinlichkeitsheorie Verw. Gebiete, 1975, 33: 155-166.
  • 6Mason D M. An extended version of the Erdos-Renyi strong law of large numbers. Ann. Probab., 1989, 17(1): 257-265.
  • 7Liu Wen. Relative entropy densities and a class of limit theorems or the sequence of m-valued random variables. Ann. Probab., 1990, 18(2): 829-839.
  • 8Klambanuer G. Mathematical Analysis. Marcel Dekker, Inc., New York, 1975.
  • 9Pfaffelhuber E. Generalized moving averages for ergodic transforms. Metrica, 1965, 22: 97-101.
  • 10Karlin S and Taylor H M. A first course in stochastic processes. Academic Press, New York, 1975.

共引文献18

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部