期刊文献+

基于多核计算机的遥感影像多尺度分割

Multi-scale Segmentation of Remote Sensing Image based on Multi-core Computer
原文传递
导出
摘要 多尺度分割作为一种成熟的影像分割方法,在遥感影像信息提取中得到广泛应用,但算法整体效率较低。利用多核计算机实现了基于数据并行的遥感影像多尺度分割。传统的影像IO(In-put and Output)方法在影像数据量较大的情况下无法满足多核计算机并行处理的需要,设计了一种新的影像IO策略消除了这种缺陷;此外,在遥感影像多尺度并行分割的过程中,普遍存在分割结果无法直接进行合并的问题,利用对特定区域重分割的方法在保证效率的前提下解决了这个问题。结果表明:针对各种数据量与尺寸的遥感影像,并行分割效率有了较大提升,并且分割算法具备了处理大数据量影像的能力,极大地增强了通用性。利用多核计算机提升影像分割效率取得了显著成效。 As a mature image segmentation method, Multi-scale segmentation is used widely in remote sensing image information extraction, but the whole algorithm efficiency is low. In this paper, data paralleled segmentation of remote sensing image is achieved based on multi-core computer. The traditional image IO method can't satisfy the needs of parallel computing based on multi-core computer. A new image IO strategy is devised to eliminate this drawbaek; In addition,in the process of parallel segmentation,it universally exists a problem that the segmentation results can not be merged directly. The method of re-segmentation is used to solve the problem to the special areas. The experimental results show that parallel segmentation efficiency has improved significantly on images of various quantity and size. Besides, the segmentation algo- rithm has been provided with the ability of processing image of large data quantity and the applicability is greately enhanced . Image segmentation based on multi-core computer acquires remarkable effect.
出处 《遥感技术与应用》 CSCD 北大核心 2012年第4期560-565,共6页 Remote Sensing Technology and Application
基金 中央高校基本科研业务费专项资金资助项目(CUGL120267)
关键词 多尺度分割 多核计算机 影像IO策略 数据分区合并 Multi-scale segmentation Multi-core computer Image input and output strategy Data partition merging
  • 相关文献

参考文献6

二级参考文献19

  • 1李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 2沈占锋,骆剑承,陈秋晓,黄光玉,盛昊.高分辨率遥感影像并行处理数据分配策略研究[J].哈尔滨工业大学学报,2006,38(11):1968-1971. 被引量:29
  • 3骆剑承 周成虎 沈占锋.遥感信息计算研究进展.遥感学报,2009,:1-6.
  • 4郭建聪 李培军.一种高分辨率多光谱图像的多尺度分割方法.北京大学学报:自然科学版,2008,31(3):123-127.
  • 5eCognition[EB/OL].( 2003-12-30 ).http://www.defi niens-imaging.com/.
  • 6Comaniciu D,Meer P.Mean Shift: A robust approach toward feature space analysis [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5) :603-619.
  • 7陈国良,安虹.并行算法时间[M].北京:高等教育出版社,2004.
  • 8ZALIK K R, ZALIK B. A sweep-line algorithm for spatial clustering [ J ]. Advances in Engineering Software, 2009 (40) : 445 - 451.
  • 9MUKHERJEE D P, LEVNER Y P, ZHANG H. Ore image segmentation by learning image and shape features [ J]. Pattern Recognition Letters, 2009 (30) : 615 - 622.
  • 10SHEN Z, LUO J, HUANG G, et al. Distributed computing model for processing remotely sensed images based on grid computing [ J ]. Information Sciences, 2007 (177): 504 -518.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部