期刊文献+

多孔介质模型的三维重构方法 被引量:17

Study on 3D reconstruction methods of porous medium model
下载PDF
导出
摘要 建立准确的多孔介质模型在微观渗流机理的研究中具有重要意义.为了更加方便准确地建立多孔介质模型,总结了多孔介质模型重构的物理实验方法和数值重构方法,通过重构方法的优缺点对比及适用性分析,优选出马尔可夫链-蒙特卡洛方法(MCMC).针对3种不同性质的多孔介质,采用MCMC方法分别对其进行了重构.结果表明,MCMC方法计算速度快,适用范围广泛,重构效果好.最后将MCMC方法扩展到三维空间,重构出三维多孔介质模型,为微观渗流机理的研究提供了一个模拟平台. Establishment of exact porous medium model will be important to the study of percolation mechanism in porous medium.In order to conveniently and exactly establish the porous medium model,the reconstruction methods of porous medium were classified into two categories: physical test methods and numerical reconstruction methods.Through the comparison and applicability analysis of the reconstruction methods,it is held that Markov Chain-Monte Carlo method(MCMC) is the best.MCMC method was used to reconstruct three 2D porous media.The 2D reconstruction results indicate that the MCMC method has the advantages of high computation speed,wide application scope and satisfied reconstruction result.At last,the application of MCMC method is extended to three-dimensional space,and a three-dimensional model of porous medium was reconstructed,which provides an effective simulation method for studying micro percolation mechanism in porous medium.
出处 《西安石油大学学报(自然科学版)》 CAS 北大核心 2012年第4期54-57,61,共5页 Journal of Xi’an Shiyou University(Natural Science Edition)
基金 教育部科学研究重大项目"页岩气流动机理与产能预测模型研究"(编号:311008)
关键词 多孔介质 数值重构 随机生长 马尔可夫链-蒙特卡洛 porous medium numerical reconstruction random growth Markov chain-Monte
  • 相关文献

参考文献15

  • 1Tomutsa L,Silin D, Radmilovic V. Analysis of chalk petro- physical properties by means of submicron-scale pore ima- ging and modeling [ C]. SPE 99558,2007.
  • 2Wu Kejian, Marinus I J, Van Dijke. 3D Stochastic of Het- erogeneous Porouos Media-Applications to Reservoir Rocks [ J ].Transport in Porous Media, 2006,65:443-467.
  • 3Hidajat I, Rastogi A, Singh M, et al. Transport properties of porous media from thin sections [ C]. SPE 69623,2001.
  • 4刘学锋.基于数字岩心的岩石声电特性微观数值模拟研究[D].东营:中国石油大学出版社,2010.
  • 5Dunsmuir J H,Ferguson S R,D'Amico K L. X-ray micro- tomography:a new tool for the characterization of porous media r C 1. SPE 22860,1991.
  • 6李仁民,刘松玉,方磊,杜延军.采用随机生长四参数生成法构造黏土微观结构[J].浙江大学学报(工学版),2010,44(10):1897-1901. 被引量:31
  • 7朱益华,陶果.顺序指示模拟技术及其在3D数字岩心建模中的应用[J].测井技术,2007,31(2):112-115. 被引量:31
  • 8邹才能,朱如凯,白斌,杨智,吴松涛,苏玲,董大忠,李新景.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864. 被引量:508
  • 9Bakke S, Oren P E. 3-D pore-scale modeling of sandstones and flow simulations in the pore networks [ C ]. SPE 35479,1997.
  • 10Joshi M. A class of stochastic models for porous media [ D ].[ s. 1.] University of Kansas. 1974.

二级参考文献21

  • 1贺承祖,华明琪.低渗砂岩气藏的孔隙结构与物性特征[J].新疆石油地质,2005,26(3):280-284. 被引量:23
  • 2胡志明,把智波,熊伟,高树生,罗蓉.低渗透油藏微观孔隙结构分析[J].大庆石油学院学报,2006,30(3):51-53. 被引量:99
  • 3廖明光,夏宏全.孔隙结构新参数_(r顶点)及其应用[J].石油勘探与开发,1997,24(3):78-81. 被引量:11
  • 4TACHER L, PERROCHET P, PARRIAUX A. Generation of granular media [J]. Transport in Porous Media, 1997, 26(1): 99-107.
  • 5PILOTTI M. Generation of realistic porous media by grains sedimentation [J]. Transport in Porous Media, 1998, 33(3): 257-278.
  • 6WANG M, PAN N. Numerical analyses of effective dielectric constant of multiphase microporous media[J]. Journal of Applied Physics, 2007, 101(11) : J14102 - 1 - 114102 - 8.
  • 7NARSILIO G A, BUZZI O P, FITYUS S G, et al. Upscaling of Navier-Stokes equations in porous media theoretical, numerical and experimental approach [J] Computers and Geotechnics, 2009, 36:1200 - 1206.
  • 8PIVONKA P, NARSILIO G A, LI Ren-min, et al. Electrodiffusive transport in charged porous media: from the particle-level scale to the macroscopic scale using volume averaging [J]. Journal of Porous Media, 2009, 12(2): 101-118.
  • 9薛定谔A E.多孔介质中的渗流物理[M].王鸿勋,张朝琛,孙书琛译.北京:石油工业出版社,1982.25-33.
  • 10Adler P M, Jacquin C G and Quiblier J A. Flow in Simulated Porous Media[J]. Int. J. Multiphase Flow, 1990,16: 691--712.

共引文献562

同被引文献224

引证文献17

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部