期刊文献+

二次完备非线性函数的构造

On the construction of quadratic perfect nonlinear functions
下载PDF
导出
摘要 完备非线性函数能很好地抵抗差分密码分析,在密码和通信领域中有重要应用.构造了一族代数次数为二次的完备非线性函数,该函数为具有四项的Dembowski-Ostrom多项式.证明了新构造的完备非线性函数不但EA-不等价于已知的完备非线性方幂函数,而且也不等价于所有已知的完备非线性函数. Perfect nonlinear functions can provide good protection for differential cryptanalysis,so they have important applications in cryptology and communications.A new family of quadratic perfect nonlinear functions is constructed.They are Dembowski-Ostrom polynomials with four terms.It is proven that the new quadratic perfect nonlinear functions are EA-inequivalent not only to known perfect nonlinear power functions but also to all known perfect nonlinear functions.
作者 何业锋
出处 《西安石油大学学报(自然科学版)》 CAS 北大核心 2012年第4期101-104,119,共4页 Journal of Xi’an Shiyou University(Natural Science Edition)
基金 国家自然科学基金项目(编号:61072140) 陕西省教育厅专项科研计划项目(编号:2010JK825) 校青年教师科研基金项目(编号:ZL2010-16)
关键词 密码学 差分密码分析 差分均衡度 完备非线性 cryptology differential cryptanalysis differential uniformity perfect nonlinearity
  • 相关文献

参考文献11

  • 1Biham E, Shamir A. Differential cryptanalysis of DES-like cryptosystems[ J]. J of Cryptol, 1991,4( 1 ) :3-72.
  • 2Nyberg K. Differentially uniform mappings for cryptogra- phy[ C ]. Advances in Cryptology- EUROCRYPT93. Ber- lin : Springer-Verlag, 1994 : 55-64.
  • 3Bracken C, Byrne E, Markin N, et al. McGuire, New fami- lies of quadratic almost perfect nonlinear trinomials and multinomials [ J ]. Finite Fields Appl, 2008,14 ( 3 ) : 703- 714.
  • 4Ness G J, Helleseth T. A new family of ternary almost per- fect nonlinear mappings [ J ]. IEEE Trans Inf Theory, 2007,53 ( 7 ) :2581-2586.
  • 5Dembowski P, Ostrom T G. Planes of order n with col- lineation groups of order [ J ]. Math Z, 1968,103 (3) : 239- 258.
  • 6Ding C, Yin J. Signal sets from functions with optimum nonlinearity [ J ]. IEEE Trans. Communications, 2007,55(5) :936-940.
  • 7Cordero M, Jha V. Fractional dimensions in semifields of odd order [ J ]. Designs, Codes and Cryptography, 2011, 61 : 197-221.
  • 8Coulter R S, Henderson M. Commutative presemifields and semifields [ J ]. Adv Math, 2008,217 ( 1 ) : 282-304.
  • 9Zha Z, Kyureghyan G M, Wang X. Perfect nonlinear bino- mials and their semifields [ J ]. Finite Fields Appl, 2009, 15(2) :125-133.
  • 10Coulter R S, Matthews R W. Planar functions and planes of Lenz-Barlotti class Ⅱ [ J]. Des Codes Cryptogr, 1997,10 (2) :167-184.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部