摘要
利用重合度理论,研究一类具有偏差变元的三阶变时滞微分方程xm(t)+∑2 i=1[aix(i)(t)+bix(i)(t-τi(t))]+cx(t)+g1(x(t))+g2(x(t-τ3(t)))=e(t)的T-周期解问题,得到了上述方程T-周期解存在唯一性的若干结果,所得结果与方程的3个时滞有关.
A type of third order functional differential equation with change delaysx^m(t)+∑^2 i=1[aix^(i)(t-Ti(t))]+cx(t)+g1(x(t))+g2(x(t-T3(t)))=e(t)was considered by means of the theory of coincide degree. The sufficient condition for the existence of unique T-periodic solution was obtained. The conclusion is relevant to three delays.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2012年第4期607-615,共9页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11071001)
安徽省教育厅重点项目基金(批准号:KJ2009A005Z)
高等学校博士学科点专项科研基金(批准号:20093401110001)
安徽大学学术创新团队项目(批准号:KJTD002B)
关键词
三阶时滞泛函微分方程
周期解
重合度
three order functional differential equation with delays
periodic solution
coincidence degree