期刊文献+

一类三阶变时滞泛函微分方程周期解的存在唯一性

Existence and Uniqueness of Periodic Solution Problems for a Third Order Functional Differental Equation with Delays
下载PDF
导出
摘要 利用重合度理论,研究一类具有偏差变元的三阶变时滞微分方程xm(t)+∑2 i=1[aix(i)(t)+bix(i)(t-τi(t))]+cx(t)+g1(x(t))+g2(x(t-τ3(t)))=e(t)的T-周期解问题,得到了上述方程T-周期解存在唯一性的若干结果,所得结果与方程的3个时滞有关. A type of third order functional differential equation with change delaysx^m(t)+∑^2 i=1[aix^(i)(t-Ti(t))]+cx(t)+g1(x(t))+g2(x(t-T3(t)))=e(t)was considered by means of the theory of coincide degree. The sufficient condition for the existence of unique T-periodic solution was obtained. The conclusion is relevant to three delays.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第4期607-615,共9页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11071001) 安徽省教育厅重点项目基金(批准号:KJ2009A005Z) 高等学校博士学科点专项科研基金(批准号:20093401110001) 安徽大学学术创新团队项目(批准号:KJTD002B)
关键词 三阶时滞泛函微分方程 周期解 重合度 three order functional differential equation with delays periodic solution coincidence degree
  • 相关文献

参考文献6

二级参考文献17

  • 1Zhang Zhengqiu Wang ZhichengDept.ofAppl.Math.,HunanUniv.,Changsha410082,China.PERIODIC SOLUTIONS OF THIRD-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS[J].Applied Mathematics(A Journal of Chinese Universities),2002,17(2):145-154. 被引量:2
  • 2张正球,庾建设.一类时滞Dufing型方程的周期解[J].高校应用数学学报(A辑),1998,13(4):389-392. 被引量:52
  • 3[2]Lannacci, R., Nkashama, M.N. On periodic Solutions of forced second order differential equations with a deveiatiny argument[J]. Lecture Notes in Math., 1151, Springer-verlag, 1984, 224-232.
  • 4WANG G P.A priori bounds for periodic solutions of a delay Rayleigh equation[J].Applied Mathematics lettrs,1999,12:41-44.
  • 5LU S P,GE W G.Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument[J].Nonlinear Analysis,2004,56:501-514.
  • 6WANG Z H.Periodic solutions of Liénard equations with subquabratic potential conditions[J].J Math Anal Apple,2001,256:127-141.
  • 7LU S P,GE W G.On the existence of periodic solutions of second order differential equations with deviating arguments[J].Acta Mathematica SInica,2002,45:811-818.
  • 8ZHENG M R.Periodic solutions of Liénard equations with Singular forces of repulsive type[J].J Math Anal Apple,1996,203:254-269.
  • 9W Layton.Periodic solutions of a nonlinear delay equations[J].J Math Anal Apple,1980,77:443-460.
  • 10MA S W,WANG Z C,YU J S.Coincidence degree and periodic solutions of Duffing equation[J].Nonlinear Analysis,TMA,1998,34:443-460.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部