期刊文献+

变分迭代法求解消失时滞微分方程的收敛性 被引量:2

Convergence of Variational Iteration Method for Solving Functional Differential Equations with Vanishing Delays
下载PDF
导出
摘要 应用变分迭代法求解一类消失时滞微分方程.通过选取适当的Lagrange乘子,得到了求解这类方程的迭代格式,并证明了该格式的收敛性.数值实验验证了理论结果的正确性. The variational iteration method was applied to solving functional differential equations with vanishing delays. After determining an appropriate Lagrange multiplier, the readily obtained. Sufficient conditions are numerical experiment was also carried out given to guarantee the convergence of to illustrate the main result. approximate solutions can be the method. Furthermore, the
作者 王林君
机构地区 江苏大学理学院
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第4期705-708,共4页 Journal of Jilin University:Science Edition
基金 江苏省高校自然科学基金(批准号:11KJD110001) 江苏大学高级专业人才科研启动基金(批准号:10JDG124)
关键词 变分迭代法 时滞微分方程 收敛性 Runge-Kutte法 variational iteration method functional differential equations convergence Runge-Kutte method
  • 相关文献

参考文献1

二级参考文献5

  • 1SUGIE J, KATAYAMA. Global asymptotic stability of a predator - prey system of holling type[J]. Nonlinear Anal, 1999,38 : 105 - 121.
  • 2SUGIE J. Uniqueness of limit cycles in a predator - prey system with holling type functional response [ J ]. Appl Math, 2000, 3 (9) :577 - 590.
  • 3COOKE K, GROSSMAN Z, Discrete delay,distributed delay and stablity switches[J], J Math Anal Appl, 1982, 86:592 -627,
  • 4HASSARD B, KAZARINOFF N, WAN Y - H. Theory of applications of Hopf bifurcation, London Math Soc Leet Notes Series,41 [ M]. Cambridge : Cambridge Univ Perss, 1981.
  • 5HALE J, LUNEL S V. Introduction to functional differential equations[ M]. New York: Springer - Verlag, 1983.

共引文献2

同被引文献22

  • 1胡海昌,胡润莓.变分法[M].北京:中国建筑工业出版社,1987:14.
  • 2王学彬,刘发旺.分离变量法解三维的分数阶扩散-波动方程的初边值问题[J].福州大学学报(自然科学版),2007,35(4):520-525. 被引量:7
  • 3HE J H.Some asymptotic methods for stromgly nonlinear equ~ion[J].Int J Mod Phys,2006,20(10):1144-1199.
  • 4HE J H.Variational iteration methodsome recent resuks and new interpretations[J].J Comput Appl Math,2007(207):3-17.
  • 5HE J H,WU X.Vafiaional iteration method:new developments and applications[J].Comput Math Appl,2007(54):881-894.
  • 6WIENER J.Generalized Solutions of Functional Differential Equations[M].World Scientific,Singapore,1993.
  • 7HE J H.Variational I~r Nion Method;AKind of Non-linear Analytical Technique:Some Examples[J].Internat J Non-linear Mech,1999,34(4):699-708.
  • 8HE J H.Variational Iteration Method for Autonomous Ordinary Differential Systems[J].Appl Math Compuk,2000,114(2/3):115-123.
  • 9GORENFLO R, MAINARDI F, MORETTI D, et al. Time fractional diffusion: a discrete random walk approach[ J]. Nonlinear Dynamics, 2002,29(1): 129-143.
  • 10SAMKO S G, KILBAS A A,MARICHEV 0 I. Fractional integrals and derivatives: theory and applications[ M] . Philadelphia: Gordon and BreachScience Publishers, 1993.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部