摘要
利用素环上的微分恒等式研究素环上具有广义Engel条件的导子的性质,得到如下结果:设R是素环,L是R的非中心Lie理想,d是R上的非零导子.若xs[d(x),x]kxt=0,x∈L,其中s,k,t≥0是给定的整数,则char(R)=2.进一步,如果s=0或t=0,则R■M2(F),这里M2(F)表示特征为2的域F上的2阶全矩阵代数.
We investigated derivations with generalized Engel conditions in prime rings applying the theory of differential identities in prime rings. The main result is as follows. Let R be a prime ring, L a noncentral Lie ideal of R, d a nonzero derivation of R. Suppose that x'[d(x) ,x]kx' =0 for all x eL, where s,k,t 〉10 are fixed integers. Then char(R) =2. Moreover, if either s =0 or t =0, then RC_M2(F) for a field F.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2012年第4期709-710,共2页
Journal of Jilin University:Science Edition
基金
吉林省自然科学基金(批准号:201215220)