期刊文献+

基于GGD模型独立成分分析算法的局部稳定性分析 被引量:3

Local Stability Analysis of Independent Component Analysis Algorithm Based on Generalized Gauss Model
下载PDF
导出
摘要 基于广义Gauss概率密度模型对超Gauss和亚Gauss源混合信号进行盲分离,在Stiefel流形的自然梯度法框架下,分析了独立成分分析算法的局部稳定性,并采用几种典型非线性函数验证了所得结论的正确性和适用性. Generalized Gauss density model was employed for the blind separation of the super-Gauss sources, and the local stability analysis was performed for independent algorithm in the framework of the natural gradient in Stiefel manifold. We presented some local stability analysis and verified their correctness and applicability. mixtures of component new results sub- and analysis about its
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第4期793-797,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61071188 40776006) 湖北省自然科学基金(批准号:2009CDB077)
关键词 广义Gauss分布 独立成分分析 自然梯度 局部稳定性 generalized Gauss distribution independent component analysis natural gradient local stability
  • 相关文献

参考文献13

  • 1LEE T W. Independent Component Analysis Theory and Application [ M ]. Kluwer: Dordrecht, 2006.
  • 2Jutten C, Herault J. Blind Separation of Sources, Part I . An Adaptive Algorithm Based on Neuromimetic Architecture [J]. Signal Processing, 2007, 24(1) : 1-10.
  • 3孙韶杰,吴琼,李国辉.基于广义高斯分布的图像盲检测算法[J].信号处理,2009,25(9):1388-1392. 被引量:2
  • 4BO Xiao-chen, SHEN Lin-chen, CHANG Wen-sen. Sign Correlation Detector for Blind Image Watermarking in the DCT Domain [ C ]//Proc of 2nd IEEE Pacific-Rim Conf on Multimedia. Berlin: Springer-Verlag, 2001: 780-787.
  • 5Girolami M. An Alternative Perspective on Adaptive Independent Component Analysis Algorithms [ J ]. Neural Computation, 1998, 10(8): 2013-2114.
  • 6Barni M, Bartolini F, Rosa A, De, et al. A New Decoder for the Optimum Recovery of No Additive Watermarks [ J ]. IEEE Trans on Image Processing, 2001, 10(5) : 755-766.
  • 7Hyvarinen A, Oja E. A Fast Fixed-Point Algorithm for Independent Component Analysis [ J ]. Neural Computation, 1997, 9(7) : 1483-1492.
  • 8Amari S. Natural Gradient Learning for Over and Under-Complete Bases on ICA [J]. Pattern Recognition, 1999, 11(8) : 1875-1883.
  • 9ChoquetG.拓扑学教程[M].史树中,王耀东,译.北京:高等教育出版社,2009.
  • 10汪太月,李宏伟.一种基于广义高斯分布的自调节盲水印检测算法[J].吉林大学学报(理学版),2007,45(2):229-233. 被引量:1

二级参考文献27

  • 1T. -T. Ng,S. -F. Chang, Qibin Sun. Blind Detection of Photomontage Using Higher Order Statistics. In:IEEE International Symposium on Circuits and Systems, Vancouver, Canada, 2004.
  • 2Fridrich J. , Soukal D. , Lukas J. Detection of Copy-Move Forgery in Digital Images. In: Proc. Digital Forensic Research Workshop, Cleveland, OH ,2003.
  • 3Junfeng He, Zhouchen Lin et al.. Detecting Doctored JPEG Images via DCT Coefficient Analysis. In: Proc. of ECCV, 2006,3953 ( 3 ) :423-435.
  • 4J. Lukas, J. Fridrich, M. Goljan. Detecting Digital Image Forgeries Using Sensor Pattern Noise. In: Proc. of SPIE, 2006.
  • 5Siwei Lyu, H. Farid. Natural Image Statistics For Digital Image Forensics. Ph.D. Dissertation, Department of Computer Science, Darthmouth College,2005.
  • 6S. Bayram, I. Avcibas, et al.. Image Manipulation Detection. Journal of Electronic Imaging. 2006,15 (4).
  • 7Y.-F. Hsu, S.-F. Chang. Detecting Image Splicing Using Geometry Invariants and Camera. In: Proc. of ICME,2006 549-552.
  • 8Y.-F. Hsu, S.-F. Chang. Image Splicing Detection Using Camera Response Function Consistency and Automatic Segmentation. In : Proc. of ICME ,2007.
  • 9S. G. Mallat. A Theory for Multiresolution Signal Decomposition:the Wavelet Representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1989,11 (7) : 674-693.
  • 10P. Moulin, J. Liu. Analysis of Multiresolution Image Denoising Schemes using Generalized Gaussian and Complexity Priors. IEEE Trans. on Information Theory, 1999,45 (3) :909-919.

共引文献1

同被引文献29

  • 1Bellifemine F, Capellino A, Chimienti A, et al. Statistical analysis of the 2 D - DCT coeffi- cients of the differential signal for images [ J ]. Signal Processing: Image Communica- tion,1992, 4(6) :477 -488.
  • 2Grossman A, Morlet J. Decomposition of Hardy functions into square integral wavelets of con- stant shape [ J ]. Signal Processing, 1984,52 (3) :375 -383.
  • 3Kundur D, Hatzinakos D. Digital watermarking using muhiresolution wavelet decomposition [ J ]. Proceedings of the International Confer- ence on Acoustic, Speech and Signal Process- ing, 1998,5:2969 -2972.
  • 4Davoine F. Comparison of two wavelet based image watemarking schemes [ J ]. Proceedings of IEEE International Conference on Image Processing, 2000,3 : 682 - 685.
  • 5Chert L H, J J Lin. Mean quantization based image watermarking [ J ]. Image and Vision Computing, 2003 (21) : 717 -727.
  • 6Meyer Y. Wavelets and applications [ J ]. Pro- ceedings of International Conference Mar- seille,2011,231 - 239.
  • 7Do M N, Vetterli M. Contourlet: a computa- tional framework for directional muhiresolution image representation [ J ]. IEEE Trans. on Im- age Processing, 2006,16 ( 12 ) : 706 - 7i 2.
  • 8Candes E J. Ridgelets: Theory and applica- tions [ D ]. Thesis, Department of Statistics, Stanford University, 1998.
  • 9Katzenbeisser S, Petitcolas F. Information hid- ing techniques for steganography and digital watermarking [ M ]. Northwood : Artec House, 1999:97 - 115.
  • 10曾凡娟,周安民.基于Contourlet变换和奇异值分解的图像零水印算法[J].计算机应用,2008,28(8):2033-2035. 被引量:17

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部