期刊文献+

谐波平衡法在低速非定常流模拟中的应用 被引量:2

Application of harmonic balance method in simulations of low speed unsteady flows
下载PDF
导出
摘要 谐波平衡法是一种有效的周期性非定常流的计算方法.采用基于可压缩流的谐波平衡方程在计算低速不可压流动时,会由于对流通量计算格式中的数值粘性污染,降低解的精度和收敛性.采用预处理技术,使得基于可压缩流的谐波平衡方程可以直接用于低速周期性非定常流的计算中.选取典型的不可压方腔驱动流和低雷诺数圆柱绕流为例进行了时间推进法和谐波平衡法的计算对比.计算结果表明预处理后的谐波平衡方程适合于低速流的计算,在谐波平衡法中采用较少阶数的谐波计算就可以还原出几乎准确的非定常流场. The harmonic balance method is an effective computational method in simulating time periodic unsteady flows. When using the harmonic balance method based on compressible flow equations to solve low Mach number flows, both the accuracy and convergence of the solution would be deteriorated due to the large dissipation of the convective scheme which is specially designed for compressible flows. To solve this problem, the low speed preconditioning was adopted; therefore, the harmonic balance method based on compressible flow equations could he used to compute low speed periodic unsteady flow directly. Both the time marching calculation and the harmonic balance calculation were performed in simulating the incompressible lid-driven flow and the low Reynolds number vortex shedding cylinder flow. The results show the capability of using the preconditioned harmonic balance equation in simulating low speed periodic unsteady flows, and the unsteady flowfield could be well reconstructed by using only a few harmonics retained in the harmonic balance method.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第6期766-771,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(50506001)
关键词 周期性非定常流 谐波平衡法 低速预处理 方腔驱动流 圆柱绕流 periodic unsteady flow harmonic balance method low speed preconditioning lid-driven flow cylinder flow
  • 相关文献

参考文献13

  • 1He L. Fourier methods for turbomachinery applications [ J ]. Pro- gress in Aerospace Science,2010,46 (8) :329 - 341.
  • 2Hall K C ,Thomas J P,Clark W S. Computation of unsteady non- linear flows in cascades using a harmonic balance technique[ J]. AIAA Journal, 2002,40 ( 5 ) : 879 - 886.
  • 3Lucia D J, Beran P S, Silva W A. Reduced-order modeling:new approaches for computational physics [ J]. Progress in AerospaceSciences, 2004,40 ( 1 - 2 ) : 51 - 117.
  • 4Turkel E. Preconditioning techniques in computational fluid dy- namics[ J]. Annual Review of Fluid Mechanics ,1999,31:385 - 416.
  • 5Briley W R,Taylor L K, Whitfield D L. High-resolution viscous flow simulations at arbitrary Mach number[ J]. Journal of Com- putational Physics,2003,184:79 - 105.
  • 6Sicot F, Puigt G, Montagnac M. Block-Jacobi implicit algorithms for the time spectral method[ J]. AIAA Journal,2008,46 ( 12 ) : 3080 - 3089.
  • 7Edwards J R. Towards unified CFD simulations of real fluid flows [ R ] . AIAA-2001-2524,2001.
  • 8曹宁,吴颂平.低速流预处理Roe格式中的数值粘性[J].北京航空航天大学学报,2010,36(8):904-908. 被引量:4
  • 9Ghia U,Ghia K N,Shin C T. High-Re solutions for incompressi- ble flow using the Navier-Stokes equations and a multigrid meth- od[ J]. Journal of Computational Physics, 1982,48:387 - 411.
  • 10Dyke Van, Milton D. An album of fluid motion [ M ]. Stanford, CA : Parabolic Press, 1982.

二级参考文献1

共引文献3

同被引文献5

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部