期刊文献+

EFFECT OF A MOVING BOUNDARY ON THE FLUID TRANSIENT FLOW IN LOW PERMEABILITY RESERVOIRS 被引量:3

EFFECT OF A MOVING BOUNDARY ON THE FLUID TRANSIENT FLOW IN LOW PERMEABILITY RESERVOIRS
原文传递
导出
摘要 In a low permeability reservoir, the existence of a moving boundary is considered in the study of the transient porous flow with threshold pressure gradient. The transmission of the moving boundary directly indicates the size of the drainage area as well as the apparent influences on the pressure behavior. The nonlinear transient flow mathematical model in which the threshold pressure gradient and the moving boundary are incorporated is solved by advanced mathematical methods. This paper presents some new analytical solutions describing the pressure distribution at a constant rate and the production decline in a constant pressure production with the boundary propagation. It is shown that the greater the threshold pressure gradient, the slower the transmission of the moving boundary, the larger the pressure loss will be, and there is no radial flow in the middle and later phases of the wellface pressure for a well at a constant rate. We have the the maximum moving boundary at a specific drawdown pressure for a low permeability reservoir The greater the threshold pressure gradient, the smaller the maximum moving boundary distance, the quicker the production decline for a well in a constant pressure production will be. The type curve charts for the modern well test analysis and the rate transient analysis with a moving boundary are obtained and the field test and the production data are interpreted as examples to illustrate how to use our new results. In a low permeability reservoir, the existence of a moving boundary is considered in the study of the transient porous flow with threshold pressure gradient. The transmission of the moving boundary directly indicates the size of the drainage area as well as the apparent influences on the pressure behavior. The nonlinear transient flow mathematical model in which the threshold pressure gradient and the moving boundary are incorporated is solved by advanced mathematical methods. This paper presents some new analytical solutions describing the pressure distribution at a constant rate and the production decline in a constant pressure production with the boundary propagation. It is shown that the greater the threshold pressure gradient, the slower the transmission of the moving boundary, the larger the pressure loss will be, and there is no radial flow in the middle and later phases of the wellface pressure for a well at a constant rate. We have the the maximum moving boundary at a specific drawdown pressure for a low permeability reservoir The greater the threshold pressure gradient, the smaller the maximum moving boundary distance, the quicker the production decline for a well in a constant pressure production will be. The type curve charts for the modern well test analysis and the rate transient analysis with a moving boundary are obtained and the field test and the production data are interpreted as examples to illustrate how to use our new results.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第3期391-398,共8页 水动力学研究与进展B辑(英文版)
基金 supported by the Fundamental Research Funds for the Central Universities,the Important National Science and Technology Specific Projects during the Eleventh Five Years Plan Period(Grant No.2009ZX05009-004-03)
关键词 threshold pressure gradient moving boundary well test analysis low permeability reservoir rate transient analysis threshold pressure gradient, moving boundary, well test analysis, low permeability reservoir, rate transient analysis
  • 相关文献

参考文献5

二级参考文献59

共引文献37

同被引文献28

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部