期刊文献+

Optimization of regenerator based on semiconductor optical amplifier for degraded differential phase shift keying signal

Optimization of regenerator based on semiconductor optical amplifier for degraded differential phase shift keying signal
下载PDF
导出
摘要 Real time phase regeneration is necessary for degraded phase modulation format optical communication systems. A regenerator based on the discrimitive gain effect of a semiconductor optical amplifier was proposed in recent years. In this paper, for this type of regenerator, its optimal working condition is found by solving the dynamic equations which describe the variance of the optical field and carrier density in the semiconductor optical amplifier by the finite difference method. The results show that the optimal improvement of signal Q factor can reach more than 2.2 dB. Real time phase regeneration is necessary for degraded phase modulation format optical communication systems. A regenerator based on the discrimitive gain effect of a semiconductor optical amplifier was proposed in recent years. In this paper, for this type of regenerator, its optimal working condition is found by solving the dynamic equations which describe the variance of the optical field and carrier density in the semiconductor optical amplifier by the finite difference method. The results show that the optimal improvement of signal Q factor can reach more than 2.2 dB.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期318-323,共6页 中国物理B(英文版)
基金 Project supported by the Scientific Fund for Chinese Universities (Grant No. BUPT 2011RC009)
关键词 REGENERATOR semiconductor optical amplifier Q factor improvement phase noise regenerator, semiconductor optical amplifier, Q factor improvement, phase noise
  • 相关文献

参考文献10

  • 1Kim H and Gnauck A H 2003 IEEE Photon. Technol. Lett. 15 320.
  • 2Lin Y M, Liang R S, Lu Y Q, Lu H, Guo J B and Liu S H 2007 Acta Phys. Sin. 56 3931 (in Chinese).
  • 3Striegler A, Meissner M, Cvecek K, Sponsel K, Leuchs G and Schmauss B 2005 IEEE Photon. Technol. Lett. 17 639.
  • 4Tang X F, Zhang X G and Xi L X 2009 Chin. Opt. Lett. 7 380.
  • 5Slavik R, Parmigiani F, Kakande J, Westlund M, Skold M, Gruner N L, Phelan R, Petropoulos P and RichardsonD 2011 Proc. Opt. Fiber Conf. March 2011 Las Angeles, California, USA OMT2.
  • 6Xi L X, Tang X F, Wang S K and Zhang X G 2009 Acta Phys. Sin. 58 6243 (in Chinese).
  • 7Andrekson P A, Lundstrom C and Tong Z 2010 Proc. Eur Conf. Exhibition Opt. Commun. September 2010, Torino Italy we. 6. E. 1.
  • 8Grigoryan V S, Shin M, Devgan P S, Lasri J, Kumar P 2006 IEEE J. Liqhtwave Technol. 24 135.
  • 9Devgan P S, Shin M, Grigoryan V S, Lasri J and Kumar P 2005 Proc. Opt. Fiber Conf. March 2005, Anaheim, Cali- fornia, USA PDP34.
  • 10Xi L X, Li J P, Du S C, Xu X and Zhang X G 2011 Chin. Phys B 20 024214.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部