期刊文献+

基于小波高频分量的浮游植物活体荧光识别技术研究 被引量:10

Differentiation of Phytoplankton Populations by-in vivo-Fluorescence Based on High-Frequency Component of Wavelet
原文传递
导出
摘要 提出了一种基于小波高频分量的浮游植物活体荧光识别技术。通过测量近海常见52种浮游植物的三维荧光光谱,利用小波函数将光谱分解6层后得到系列正交高频分量cd1~cd6,通过标准偏差选择稳定而特异性强的分量特征点及其组合作为浮游植物荧光识别特征谱,并对其稳定性和判别能力进行贝叶斯判别分析,以判别正确率为基准选择分量组合cd3~cd6作为最佳荧光识别特征谱构建浮游植物荧光标准特征谱库,结合非负最小二乘法实现了浮游植物群落组成门、属水平上的识别测定:单种浮游植物在门、属水平上的识别正确率分别为95.5%和85.7%;浮游植物混合样品(混合比例分别为100%,75%,25%)在门水平上的识别正确率分别为100%,90.9%,53.3%,平均识别相对含量分别为79.7%,68.3%,17.5%;优势藻(单种优势度达75%)在属水平上的识别正确率为81.2%。将该技术用于围隔实验和现场调查采集水样,有效实现了浮游植物在门水平上的定性定量识别测定。 A fluorescence spectroscopy method of classification for phytoplankton populations is developed based on the high-frequency component of wavelet transform. Three-dimensional (3D) fluorescence spectra of 52 species are projected onto the wavelet function and a series of high-frequency components (cdl- cd6) are obtained. The characteristic points are chosen by the standard deviation and used to form new feature vectors. These feature vectors are analyzed by Bayesian discrimination and cd3 ~ cd6 components are selected as the optimal feature vector for differentiation with the discriminant accuracy rate as a standard, based on which, nonnegative least squares (NNLS) method is introduced to establish the discrimination technique. The technique is used to identify algal species at both the division and the genus level and the correct discrimination rates (CDRs) are 95.5 % and 85.7 %, respectively. For the actual mixture samples (the mixed proportions are 100%, 75%, 25%), the CDRs are 100%, 90.9%, 53.3 % with the relative contents of 79.7 %, 68.3 %, 17.5 %, respectively at the division level and the CDRs of the dominant species (75%) is 81.2% at the genus level. For the water samples from mesoco,~m experiment and the Jiaozhou Bay, the method can be used to realize the identification of phytoplankton population and estimate the relative abundance of different classes at the division level effectively.
出处 《中国激光》 EI CAS CSCD 北大核心 2012年第7期220-230,共11页 Chinese Journal of Lasers
基金 国家863计划(2009AA063005) 国家自然科学基金(40976060) 山东省自然科学基金(ZR2009EM001)资助课题
关键词 光谱学 识别 小波高频分量 三维荧光光谱 浮游植物 spectroscopy discrimination wavelet high-frequency component three-dimensional fluorescencespectrum phytoplankton
  • 相关文献

参考文献23

  • 1赖波, 周岳溪, 窦连峰 等. ABS废水处理过程中芳香类有机污染物三维荧光特性的变换规律[J].光学学报, 2011, 31(1): 0130001.
  • 2C. S. Yentsch, D. A. Phinney. Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations[J].Journal of Plankton Research, 1985, 7(5): 617-632.
  • 3T. J. Cowles, R. A. Desiderio, S. Neuer. In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra[J].Marine Biology, 1993, 115(2): 217-222.
  • 4F. E. Hoge, C. W. Wright, R. N. Swift et al.. Fluorescence signatures of an iron-enriched phytoplankton community in the eastern equatorial Pacific Ocean[J].Deep Sea Res. Ⅱ, 1998, 45(6): 1073-1082.
  • 5J. Seppl, M. Balode. The use of spectral fluorescence methods to detect changes in the phytoplankton community[J].Hydrobiologia, 1998, 363(1-3): 207-217.
  • 6L. Boddy, C. W. Morris, M. F. Wilkins et al.. Identification of 72 phytoplankton species by radial basis function neural network analysis of flow cytometric data[J].Marine Ecology Progress Series, 2000, 195: 47-59.
  • 7J. Gregor, B. Marsalek, H. Sípkove. Detection and estimation of potentially toxic cyanbacteria in raw water at the drinking water treatment plant by in vivo fluorescence method[J].Water Research, 2007, 41(1): 228-234.
  • 8M. Beutler, K. H. Wiltshire, B. Meyer et al.. A fluorometric method for the differentiation of algal populations in vivo and in situ[J].Photosynthesis Research, 2002, 72(1): 39-53.
  • 9张前前,类淑河,王修林,王磊,于萍.浮游植物活体三维荧光光谱分类判别方法研究[J].光谱学与光谱分析,2004,24(10):1227-1229. 被引量:35
  • 10金海龙,王玉田.基于荧光发射光谱的活体海藻识别方法研究[J].传感技术学报,2006,19(1):97-99. 被引量:10

二级参考文献106

共引文献111

同被引文献171

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部