期刊文献+

TiO_2/SiO_2多层膜的带隙结构及光催化性能 被引量:4

Band Gap Properties and Photocatalytic Activities of TiO_2/SiO_2 Multilayer Film
原文传递
导出
摘要 利用传输矩阵法设计了由SiO2、TiO2组成的多层膜高透射率光子晶体结构,并分析了其透射谱特性,根据等效层原理改变多层膜一维光子晶体的自身结构来提高通带内特征波长附近的透射率,获得了最佳结构参数。研究结果表明,当晶格参数为150nm,填充比为0.346,周期数为6时,400nm波长附近吸收带处的透射率最低也可达96.5%,并且不论是TM模式还是TE模式,入射角在0°~45°范围内仍保持高的透射率,该结构可望用于空气净化装置以提高SiO2、TiO2光催化剂的光催化效率。 By using the transfer-matrix method,the multilayer films of photonic crystal composed of SiO2 and TiO2 with high-transmissivity are designed.The characteristics of transmission spectra of the multilayer films are studied.Based on the theory of equivalent layer,the structure of photonic crystal is modified to improve the transmittance in the pass band around specific wavelength,and the optimal parameter is obtained.The results indicate that the minimum transmittance of the optimal structure with lattice paramenter of 150 nm,filling ratio of 0.346 and periodicity of 6,is also up to 96.5% at 400 nm.No matter the incident wave is TM model or TE model,the transmittance do not change significantly,when the incident angles changes from 0° to 45°.The structure can be used for air purification device to improve the photocatalytic efficiency of SiO2 and TiO2 films.
出处 《光学学报》 EI CAS CSCD 北大核心 2012年第7期188-192,共5页 Acta Optica Sinica
基金 国家自然科学基金(50874079)资助课题
关键词 薄膜 SiO2/TiO2多层膜 传输矩阵法 透射率 光催化 thin films; SiO2/TiO2 multilayer films; transfer-matrix method; transmittance; photocatalysis
  • 相关文献

参考文献24

二级参考文献110

共引文献104

同被引文献58

  • 1吴树新,马智,秦永宁,贾立山,黎洪瑞.过渡金属掺杂二氧化钛光催化性能的研究[J].感光科学与光化学,2005,23(2):94-101. 被引量:50
  • 2杨志远,彭龙贵,周安宁,刘彦平.硫掺杂TiO_2的制备及其光催化降解次甲基蓝研究[J].化工新型材料,2006,34(5):35-37. 被引量:10
  • 3关鲁雄,李家元,王婷,李娟,钟文毅.掺杂铜和钒的纳米二氧化钛的光催化性能[J].中南大学学报(自然科学版),2006,37(4):731-736. 被引量:31
  • 4H. H. Kolm. Solar-Battery Power Source[R].Quarterly Progress Report, Solid State Research, Group 35, 1956. 13-15.
  • 5L. Fraas, R. Ballantyne, J. Samaras et al.. A thermophotovoltaic electric generator using GaSb cells with a hydrocarbon burner[C].1st World Conference on Photovoltaic Energy Conversion, 1994. 1713-1716.
  • 6L. M. Fraas, J. Samaras, H. X. Huang et al.. Development status on a TPV cylinder for combined heat and electric power for the home[C].Fourth NREL Conference on Thermophotovoltaic Generation of Electricity, AIP Conference Proceedings, 1998, 460: 371-383.
  • 7R. R. Siergiej, B. Wernsman, S. A. Derry et al.. 20% efficient InGaAs/InPAs thermophotovoltaic cell[C].Fifth Conference on Thermophotovoltaic Generation of Electricity, 2003. 414-423.
  • 8C. Murray, F. Newman, S. Murray et al.. Multi-wafer growth and processing of 0.6-eV InGaAs monolithic interconnected modules[C].29th IEEE Photovoltaic Specialists Conference, 2002, 888-891.
  • 9M. K. Hudait, Y. Lin, M. N. Palmisiano et al.. O. 6-eV bandgap In0.69 Ga0.31 As thermophotovoltaic devices grown on InAsyP1-y step graded buffers by molecular beam epitaxy[J]. IEEE Electron Device Lett., 2003, 24(9): 538-540.
  • 10Ning Su, Patrick Fay. Characterization and modeling of InGaAs/InAsP thermophotovoltaic converters under high illumination intensities[J].J. Appl. Phys., 2007, 101(6): 064511.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部