期刊文献+

基于特征的超声信号分类检测方法 被引量:5

Feature based method for classifying and detecting ultrasonic signals
原文传递
导出
摘要 超声检测技术在工业和科研领域得到广泛的应用。在恶劣的条件下,超声信号受到混响的干扰。传统的匹配滤波方法在这种情况下检测性能不理想。该文提出一种基于特征的检测方法,对接收信号进行分类再进行检测。该方法基于模式识别来区分是否存在回波。先利用Wigner-Ville分布和双谱提取信号的特征,然后进行主成分分析降低特征的维数,降维的特征向量送入有监督学习的分类器。实验表明,与传统的匹配滤波方法相比,该方法在-5dB的信混比时具有较好的检测性能。 Ultrasonic detection is widely used in industry and research. However, the received signals are often strongly disturbed by reverberations and traditional matched filters (MF) do not effectively remove these. An approach based on signal features used here where the received signals are first classified before detection. The algorithm is basically a pattern recognition approach to distinguish the presence of a target. Signal features are extracted using the Wigner Ville distribution (WVD) and a bispeetrum. The dimensionality of the feature vector is reduced through principal component analysis with the reduced vector sent to a classifier using supervision and training. Tests show that the method has a better detection effect at the signal-to-reverberation ratio (SRR) of around 5 dB compared with traditional matched filters.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期941-945,共5页 Journal of Tsinghua University(Science and Technology)
关键词 超声信号 混响 模式识别 WIGNER-VILLE分布 ultrasonic signal reverberation pattern recognition Wigner-Ville distribution (WVD)
  • 相关文献

参考文献12

  • 1Andrea T. Detection of objects buried in the seafloor by a pattern-recognition approach [J]. IEEE Journals of Oceanic Engineerin, 2001, 26(4): 769 - 782.
  • 2Ramazan D, Jafar S. Model--based estimation of ultrasonic echoes, Part I: Analysis and algorithms [J]. IEEE Trans Ultrason, Ferroelect, Freq Contr, 2001, 48(3) : 787 - 802.
  • 3Angelo M S. Correlation receivers using laguerre filter banks for modeling narrowband ultrasonic echoes and estimating their time of-flight [J]. IEEE Trans Ultrason, Ferroelect, freq Contr, 1997, 44(6): 1253 - 1263.
  • 4Saad M M, Bleakley C J, Dobson S. Robust high-accuracy ultrasonic range measurement system [J]. IEEE Transactions on Instrumentatioe and Measurement, 2011, 60(10) : 3334 - 3341.
  • 5De Leon P, MA Yunsheng. Normaiized, HOS-based, blind speech separation algorithms [C]//Conference Record of the 34-th Asilomar Conference on Signals, Systems and Computers. Piscataway, NJ: IEEE Press, 2000, 2:1197 - 1201.
  • 6Oruklu E, Aslan S, Saniie J. Applications of time frequency distributions for ultrasonic flaw detection [C]// 2009 IEEE International Ultrasonics Symposium. Piscataway, N J: IEEE Press, 2009: 2000-2003.
  • 7Farina D, Lucas M F, Doncarli C. Optimized wavelets for blind separation of nonstationary surface myoelectric signals [J]. IEEE Transactions on Biomedical Engineering, 2008, 55(1), 78-86.
  • 8Reed S, Petillot Y, Bell J. An automatic approach to the detection and extraction of mine features in sidescan sonar [J]. IEEE Journal of Oceanic Fngineering, 2003, 28(1): 90 - 105.
  • 9Gupta M R, Anderson H S, CHEN Yihua. Joinl deconvolution and classification for signals with muhipath [C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE Press, 2007, 3:1069 1072.
  • 10Soares F W, Manoel S J, Pereira C L. Principal component analysis for classifying passive sonar signals [C]// The 2001 IEEE International Symposium on Circuits and Systems. Piscataway, NJ: IEEE Press, 2001= 592 595.

二级参考文献8

  • 1[1]Rui Y,Huang T S,Ortega M,et al.Relevance feedback: A power tool in int eractive content-based image retrieval [J].IEEE Trans on Circuits and Syst fo r Video Tech,1998,8(5): 644-655.
  • 2[2]Rui Y,Huang T S.A novel relevance feedback technique in image retrieval [A].Proc 7th ACM Int Conf on Multimedia (part 2) [C].Orlando,Florida,199 9.67-70.
  • 3[3]Ishikawa Y,Subramanya R,Faloutsos C.Mindreader: Query Databases Through Multiple Examples [A].Proc 24th Int Conf on Very Large Databases [C].New York,1998.218-227.
  • 4[4]Vapnik V.The Nature of Statistical Learning Theory [M].New York: Sprin ger Verlag,1995.
  • 5[5]Burges C J C.A tutorial on support vector machines for pattern recognitio n [J].Data Mining and Knowledge Discovery,1998,2(2): 1-47.
  • 6[6]Osuna E.Applying SVMs to face detection [J].IEEE Intelligent Systems,1998,13(4): 23-26.
  • 7[7]Chapelle O,Haffner P,Vapnik V.Support vector machines for histogram-bas ed image classification [J].IEEE Trans on neural networks,1999,10(5): 1057 -1064.
  • 8[8]Huang J,Kumar S R,Mitra M,et al.Image indexing using color correlogram s [A].Proc.of IEEE conf.on Computer Vision and Pattern Recognition [C].S an Juan,Puerto Rico,1997.762-768.

共引文献38

同被引文献39

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部