期刊文献+

基于直线加速度的人体质量测量方法及其地面实验研究 被引量:1

On-ground experimental investigation of a linear acceleration based body mass measurement method
原文传递
导出
摘要 微重力条件下的人体质量测量方法和设备对于长期载人航天的航天员健康监测具有重要意义。该文比较了可行的测量方法,选取了基于Newton第二定律的直线加速度法进行地面实验研究。搭建了实验平台,利用弹簧-凸轮的恒力机构产生恒定拉力牵引人体做直线匀加速运动,利用气浮台模拟水平方向微重力条件,对45~90kg的刚性砝码和15名50~60kg的人体被试进行测量实验。实验结果显示:该实验平台符合匀加速直线运动规律,标定后对刚性砝码测量精度优于0.2kg,对于人体测量结果稳定性较高,整体精度在0.5kg左右。可见,直线加速度方法可以用于微重力下人体质量测量,通过延长运动时间、加强人体的固定和增加被试者训练等方法应可得到较好精度。 Human body measurements in micro〉gravity environments are important for health monitoring of astronauts in long:term manned space missions. This study analyzes the linear acceleration method which is based on Newton's second law. An onground experimental platform was developed consisting of a spring cam assembly to generate a constant pulling force to linearly accelerate the human body and an air bearing table to simulate the micro-gravity environment in the horizontal directions. Rigid weights from 45 90 kg and 15 human subjects from 50- 60 kg were tested. The results show that the method satisfies Newton's second law with measurement accuracy of 0.2 kg for the rigid weights. Good repeatability is observed for the humans and the accuracy is approximately 0.5 kg. The results indicate that the linear acceleration method is useful for human body mass measurements in micro-gravity environments and that the measurement error can be reduced by longer motion times, better body restriction and proper training of the human subjects.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期1013-1017,共5页 Journal of Tsinghua University(Science and Technology)
基金 中国载人航天工程资助项目
关键词 微重力 人体质量测量 恒力 直线加速度 气浮台 micro gravity body mass measurement constant force linear acceleration air bearing table
  • 相关文献

参考文献12

  • 1Silvus H S, Solberg R F. Active-Spring Linear Motion Device for Determining Mass of Object Used under Microgravity Conditions [P]. USSg02964-A, USA, 1999.
  • 2Gardner M S, Dimeff J, Ogden E. A mass measuring device for use with biological specimens in zero-gravity environment [J]. Medical & Biological Engineering, 1969, 7(6): 601 - 606.
  • 3Ono T, Uozumi H, Honda O, et al. Mass measurement under weightless conditions by the frequency-controlled method [J]. Measurement, 1997, 22: 87-95.
  • 4Fujii Y, Fujimoto H, Namioka S. Mass measurement under weightless conditions [J]. Review of Scientific Instruments, 1999, 711(1): 111-113.
  • 5Fujii Y, Fuiimoto H, Watanabe R, et al, Balance for measuring mass under microgravity conditions [J]. AIAA Journal, 2001, 39(3) : 455 - 457.
  • 6Rivetti A, Martini G, Birello G, et al. The measurement of inertial mass in a micro gravity environment: Theory and practice of the centrifugal method [J]. Acta Astronautica, 1997, 41: 301-310.
  • 7Rivetti A, Martini G, Alasia F, et al. An inertial, low-capacity balance designed to be accommodated on board the International Space Station [C]// Proceedings of the 2nd European Symposium on the Utilisation of the International Space Station. Paris: European Space Agency (ESA), 1999: 93 - 98.
  • 8Rivetti A, Martini G, Alasia F, et al. BRC 3, the latest inertial centrifugal balance for mass measurement in weightless conditions [J]. Microgravity Science and Technology, 2008, 20(1) : 7 - 15.
  • 9Smith D C, Kaufman K A. Space linear acceleration mass measurement device (SLAMMD) for the human research facility (HRF) [C]// 28th International Conference on Environmental Systems. Danvers, USA, 1998.
  • 10严辉,李路明,郝红伟,等.一种恒力机构的设计与测试[J/OL].(2009-0901).[Z0100208].中国科技论文在线(http//www.paper.edu.cn).

二级参考文献20

  • 1孔令云,周凤岐.用三轴气浮台进行混沌控制与反控制研究[J].宇航学报,2007,28(1):99-102. 被引量:10
  • 2Schwartz Jana L, Mason Peck A, Hall Christopher D. Historical review of spacecraft simulators[J]. Advances in the Astronautical Sciences, 2003, 114:405-423.
  • 3Miller D, Saenz-Otero A, Wertz J, et al. Spheres: a testbed for long duration satellite formation flying in micro-gravity conditions [ J]. Advances in the Astronautical Sciences, 2000, 1051 :167 - 179.
  • 4Kim Byungmoon, Velenis Efstathios, Kriengsiri Patrick, et al. Designing a low-cost spacecraft simulator[ J]. IEEE Control Systems Magazine, 2003, 23 (4) : 26 - 37.
  • 5Regehr Martin W, Acikmese Ahmet B, Ahmed Asif, et al. The formation control testbed[ C ]// 2004 IEEE Aerospace Conference Proceedings, Big Sky, MT, United States, 2004:557 -563.
  • 6Mattthew Wette, Garett Sohl, Daniel Scharf, et al. The formation algorithms and simulation testbed [ C ]// 2ND International Formation Flying Symposium, Washington, D. C, 2004:1-10.
  • 7Glover Kenneth E. Development of a Large Support Surface for an Air-Bearing Type Zero-Gravity Simulator [ R ]. Hampton: NASA Langley Research Center, 1976.
  • 8Schwartz J L, Peck M A, Hall C D. Historical Review of Spacecraft Simulator[ J]. Advances in the Astronauti- cal Sciences, 2003, 114: 405-423.
  • 9Spencer M G. , Chernesky V, Baker J, et al. Bifocal Relay Mirror Experiments on the NPS Three Axis Spacecraft Simulator[ C ]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 2002 -5031.
  • 10Schwartz J L. The Distributed Dpacecraft Attitude Control System Simulator-from Design Concept to Decentralized Control [ D ]. Virginia Polytechnic Institute and State University, 2004.

共引文献17

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部