期刊文献+

骨组织工程用纳米羟基磷灰石/细菌纤维素的体外降解行为研究(英文) 被引量:3

In vitro Degradation Performance of Nano-Hydroxyapatite/Bacterial Cellulose for Bone Tissue Engineering
下载PDF
导出
摘要 将细菌纤维素浸泡在模拟体液中沉积而形成的纳米羟基磷灰石/细菌纤维素复合材料(nano-HA/BC),被认为是在骨组织工程领域中理想的支架材料。从以下几方面分析nano-HA/BC在磷酸盐缓冲液(PBS)中浸泡不同时间后的降解行为及其相应的机制:材料的降解程度、nano-HA颗粒的稳定性和BC的结构变化。结果表明,nano-HA/BC在PBS溶液中浸泡一定时间后,nano-HA颗粒会逐渐溶解或脱落,水分子直接与BC纤维丝相互作用。在水分子和离子的作用下,BC的结晶度降低,BC分子链中分子间和分子内的结合力降低,甚至部分非结晶区内C—O—C键断裂。而C—O—C键的断裂是nHA/BC在PBS溶液中BC大分子降解的主要机制。研究结果对于研究骨组织工程支架材料nHA/BC的体内降解行为具有重要的指导意义。 Nano-hydroxyapatite/bacterial cellulose (nano-HA/BC) composite, obtained by depositing in simulated body fluid, is expected to have potential applications in tissue engineering. The in-vitro degradation performance and the corresponding mechanism of nano-HA/BC immersed in phosphate buffer solution (PBS) are investigated with several flakes of nano-HA/BC soaked in PBS for different time. The degradation degree of materials, the stability of nano-HA particles and the swelling and structural changes of BC are analysed successively. The results indicate that nano-HA particles are able to dissolve or drop off gradually and that water molecules attack the BC fibrils. So the bonding strength of molecular chains is weakened and the partial C--O--C bonds disconnect. The disconnection of C--O--C bonds is considered as the primary reason for the degradation of BC large molecular chains after nHA/BC is immersed in PBS. The present work is available for controlling the in vivo degradation performance of nHA/BC acting as bone tissue engineered scaffold materials.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期524-532,共9页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家重点基础研究发展计划(2007CB936101)资助
关键词 纳米羟基磷灰石/细菌纤维素 降解 磷酸盐缓冲液 nano-hydroxyapatite/bacterial cellulose degradation phosphate buffer solution
  • 相关文献

参考文献22

  • 1Lee J W, Deng F, Yeomans W G, et al. Direct incorporation of glucosamine and N-acetyl- glucosamine into exopolymers by Gluconacetobacter xylinus (=Acetobacter xylinum) ATCC 10245: production of chitosan-cellulose and chitin-cellulose exopolymers. Appl Environ Microbiol, 2001, 67: 3970-3975.
  • 2Wan Y Z, Huang Y, Yuan C D, et al. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci and Eng C, 2007, 27:855-864.
  • 3Svensson A, Nicklasson E, Harrah T, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 2005, 26:419-431.
  • 4Backdahl H, Helenius G, Bodin A, et al. Mechanical properties of bacterial cellulose and interactions withsmooth muscle cells. Biomaterials, 2006, 27: 2141- 2149.
  • 5Wu L B, Ding J D. In vitro degradation of three- dimensional porous poly (D, L-lactide-coglycolide) scaffolds for tissue engineering. Biomaterials, 2004, 25:5821-5830.
  • 6Vey E, Roger C, Meehan L, et al. Degradation mechanism of poly (lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Polymer Degradation and Stability, 2008, 93: 1869- 1876.
  • 7Lavine M S. Biomaterials: beneficial defects. Science, 2003, 301:1633.
  • 8Oonishi H. Comparative bone growth behavior in granules of bioceramic materials of various sizes. Journal of Biomedical Materials Research Part A, 1999, 44:31-43.
  • 9Murugan R, Ramakrishna S. Effect of zirconia on the formation of calcium phosphate bioceramics under microwave irradiation. Materials Letters, 2004, 58: 230-234.
  • 10Murugan R, Sampath Kumar T S, Panduranga Rao K. Fluorinated bovine hydroxyapatite: preparation and characterization. Materials Letters, 2002, 57:429-433.

同被引文献42

  • 1陆松华,张天一,李峰,田磊,尤庆生,朱昌来.细菌纤维素修复兔颈段食管部分缺损的实验研究[J].生物医学工程研究,2011,30(4):216-219. 被引量:2
  • 2夏朝红,戴奇,房韦,陈和生.几种多糖的红外光谱研究[J].武汉理工大学学报,2007,29(1):45-47. 被引量:106
  • 3Schenfelder U,Abel M,Wiegand C,et al.Influence of selected wound dressing on PMN elastase in chronic wound fluid and their antioxidative potential in vitro[J].Biomaterials,2005,26(33):6664-6673.
  • 4Peng Shuai,Zheng Yudong,Wu Jian,et al.Preparation and characterization of degradable oxidized bacterial cellulose reacted with nitrogen dioxide[J].Polymer Bulletin,2012,65(2):415-423.
  • 5Okita Y,Saito T,Isogai A.Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation[J].Biomacromolecules,2010,11 (6):1696-1700.
  • 6Luo Honglin,Xiong Guangyao,Hu Da,et al.Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications[J].Materials Chemistry and Physics,2013,143:373-379.
  • 7Lu Chuan,Chen Shiyan,Zheng Yi,et al.TEMPO-mediated oxidation of bacterial cellulose in buffer solution[C]//Han Yafang,eds.Materials Science Forum.Switzerland:Trans Tech Publications Inc.,2014,789:90-94.
  • 8Chen RN,Wang GM,Chen CH,et al.Development of N,O-(carboxymethyl) chitosan/collagen matrixes as a wound dressing[J].Biomacromolecules,2006,7(4):1058-1064.
  • 9Phisalaphong M,Jatupaiboon N.Biosynthesis and characterization of bacteria cellulose-chitosan film[J].Carbohydrate Polymers,2008,74(3):482-488.
  • 10Jia Yuanyuan,Wei Zhenhong,Fu Wei,et al.Biocompatibility evaluation on a bio-hydrogel composed of bacterial cellulose and chitosan[J].Journal of Biomaterials and Tissue Engineering,2014,4(2):118-125.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部