期刊文献+

采用测地线活动轮廓模型检测与跟踪运动目标 被引量:5

Moving object detection and tracking based on geodesic active contour model
下载PDF
导出
摘要 水平集几何活动轮廓模型能较好地适应曲线的拓扑变化.为了跟踪和获取刚体和非刚体运动目标的轮廓信息,提出了一种基于改进测地线活动轮廓(GAC)模型和Kalman滤波相结合的算法以检测和跟踪运动目标.该算法首先采用高斯混合模型和背景差分获取目标的运动区域,在运动区域内采用引入距离规则化项的GAC模型进行曲线演化,使改进GAC模型在运动目标的真实轮廓处收敛;然后通过结合Kalman滤波预测目标下一帧的位置,实现对目标轮廓跟踪.实验结果表明,该方法适用于刚体和非刚体目标,在部分遮挡的情况下也能保持良好的检测和跟踪效果. The geometric-active contour model based on the level set can better handle the variations of the curve topology. In order to track a rigid or non-rigid moving object and extract its contour information, we propose a combination method of the improved geodesic active contour (GAC) model and Kalman filter. In this method, the moving regions of the object are determined by using Gaussian mixture model and the background difference method; the GAC model with a distance regularization term is used to perform the curve evolution in the moving region, making the evolving curve approaching to the true contours of the object. The tracking of the moving object is realized by using Kalman filter to predict the object position of the next frame. Experimental results show that the proposed method is applicable to both rigid and non-rigid objects, achieving good detection and tracking effect even in the case of partial occlusion.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第6期747-753,共7页 Control Theory & Applications
基金 国家自然科学基金资助项目(61005032) 辽宁省教育厅资助项目(L2010202)
关键词 测地线活动轮廓(GAC)模型 目标检测 目标跟踪 水平集 距离规则化项 geodesic active contours model object detection object tracking level set distance regularization term
  • 相关文献

参考文献13

  • 1HU Weiming, TAN Tieniu, WANG Liang, and Steve Maybank. A sur- vey on visual surveillance of object motion and behaviors [J]. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applica- tions and Reviews, 2004, 34(3): 334 - 352.
  • 2KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models [J]. International Journal of Computer Vision, 1988, 1(4): 321 - 331.
  • 3CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours [J]. International Journal of Computer Vision, 1997, 22(1): 61 - 79.
  • 4PARAGIOS N, DERICHE R. Geodesic active contours and level sets for the detection and tracking of moving objects [J]. Pattern Anal- ysis and Machine Intelligence, 2000, 22(3): 266 - 280.
  • 5王威,陈益稳,王润生.基于自适应水平集方法的运动目标跟踪[J].计算机科学,2010,37(3):271-274. 被引量:2
  • 6于慧敏,徐艺,刘继忠,高晓颖.基于水平集的多运动目标时空分割与跟踪[J].中国图象图形学报,2007,12(7):1218-1223. 被引量:8
  • 7OSHER S J, SETHIAN J A. Fronts propagation with curvature de- pendent speed: algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79:12 - 49.
  • 8LI C M, XU C Y, GUI C E et al. Level set evolution without re- initialization: a new variational formulation [C] //Computer Vision and Pattern Recognition. San Diego: IEEE, 2005:430 - 436.
  • 9LI C M, XU C, GUI C, et al. Distance regularized level set evolution and its application to image segmt;ntation [J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243 - 3254.
  • 10WELCH G, BISHOP G. An Introduction to the Kalman Filter [EB/OL]. [2006-7] TR95-401, http:// www. cs.unc.edu /-welch/ kalman/kalmanlntro.html.

二级参考文献23

  • 1Foresti G L, Mahonen P, Regazzoni C S, et al. Multimedia Video - Based Surveillance Systems:Requirements, Issues and Solutions [M]. Norwell, MA: Kluwer Academic Publishers, 2000.
  • 2Romano R, Lee L, Stein G. Monitoring activities from multiple video streams: Establishing a common coordinate frame[J]. IEEE Trans. on PAMI, 2000,22(8) : 758-768.
  • 3Spirito M, Regazzoni C S, Marcenaro L. Automatic detection of dangerous events for underground surveillance[C]//IEEE Conference on Advanced Video and Signal Based Surveillance. 2005 : 195-200.
  • 4Hu W,Tan T,Wang L,et al. A survey on visual surveillance of object motion and behaviors[J]. IEEE Transactions on Systems, Man, and Cybernetics-PART C: Applications and Reviews,2004,34(3):334-351.
  • 5Osher S, Sethian J A. Fronts propagating with curvature dependent speed:algorithms based on Hamilton-Jacobi formulation [J]. Journal of Computer Physics, 1988,79 ( 1 ) : 12-49.
  • 6Li Chunming,Xu C Y,Gui C F,et al. Level Set Evolution Without Re-initialization: A New Variational Formulation[C] // IEEE Conference on Computer Vision and Pattern Reeognition. 2005.
  • 7Joshi N, Brady M. Non-parametric mixture model based evolution of level sets[C]//International Conference on Computing: Theory and Applications, ICCTA. 2007.
  • 8Silveira M, Marques J S. Level Set Segmentation of Dermoscopy Images[C]//IEEE international symposium on biomedical image, ISBI. 2008 : 173-176.
  • 9Flenner A. Finding Edge Features Using the Fast Level Set Transform and the Helmholtz Principle[C]//Southwest Symposium on Image Analysis & Interpretation, SSIAI. 2008:9-12.
  • 10Isard M, Blake A. Condensation-conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1996,28(1) :5-28.

共引文献18

同被引文献57

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部