期刊文献+

椭圆曲线密码体制应用及脆弱性量子分析

Quantum Analysis on Vulnerability of Elliptic Curve Cryptosystem
下载PDF
导出
摘要 首先简要介绍椭圆曲线相关知识及其密码学应用,然后进行椭圆曲线加密体制(ECC)脆弱性分析,包括ECC的一般曲线分析、特殊曲线分析.重点提出了椭圆曲线上的离散对数脆弱性的量子分析方法. The article introduces elliptic curve public-key cryptosystem and its related knowledge. It also analyzes security of elliptic curve public-key cryptosystem, which includes general analysis, special analysis and quantum analysis for vulnerability.
作者 周学广
出处 《吉首大学学报(自然科学版)》 CAS 2012年第3期27-31,共5页 Journal of Jishou University(Natural Sciences Edition)
关键词 椭圆曲线密码 公钥密码体制 离散对数 脆弱性分析 量子分析 elliptic curve cryptosystem public-key cryptosystem discrete logarithm vulnerability analy-sis quantum analysis
  • 相关文献

参考文献11

  • 1RIVEST R L,SHAMIR A,ADLEMAN L. A Method for Obtaining Digital Signatures and Public Key Cryptosystems [J]. Communications of the ACM, 1978,21 (2) : 120 - 126.
  • 2ELGAMAL L. A Public Key Cryptosystem and a Signature Scheme Base on Discrete Logarithm [J]. IEEE Trans. In-fo. Theory,1985,31:469 - 472.
  • 3KOBLITZ NEAL. Elliptic Curve Cryptosystems [J]. Mathematics of Computation, 1987,48:203 - 209.
  • 4MILLER V. Uses of Elliptic Curves in Cryptography [C]//Advances in Cryptology CRYPTO' 85, Lecture Notes in Computer Science. Berling: Springer-Verlag, 1986,218:417 - 426.
  • 5金晨辉,郑浩然,张少武,等.密码学[M].北京:高等教育出版社,2009.
  • 6MENEZES A J, OKAMOTO T, VANSTONE S A. Reducing Elliptic Curve Logarithms to a Finite Field [J]. IEEE Trans. Info. Theory,1993,9:1639-1 646.
  • 7XU Guang-wu. Short Vectors,the GLV Method and Discrete Logarithms[J]. Journal of Lanzhou University: Natural Sciences, 2009,45 ( 1 ) : 73 - 77.
  • 8陈智华.基于DNA计算自组装模型的Diffie-Hellman算法破译(英文)[J].计算机学报,2008,31(12):2116-2122. 被引量:4
  • 9司光东,董庆宽,李艳平,肖国镇.一种基于离散对数群签名方案的分析[J].哈尔滨工程大学学报,2007,28(10):1131-1134. 被引量:2
  • 10吕欣,冯登国.密码体制的量子算法分析[J].计算机科学,2005,32(2):166-168. 被引量:3

二级参考文献45

  • 1林松,钭伟雨.一种抗伪造攻击的改进的群签名方案[J].四川大学学报(工程科学版),2006,38(1):119-123. 被引量:5
  • 2司光东,李艳平,肖国镇.一种改进的群签名方案[J].西安电子科技大学学报,2007,34(1):106-109. 被引量:9
  • 3Adleman L M. Molecular computation of solutions to combinatorial problems. Seience, 1994, 266:1021 1024
  • 4Adleman L M. Computing with DNA. Scientific American, 1998, 279(2): 54-61
  • 5Liu L Q, Liu G W, Xu J, Liu Y C.Solid phase based DNA solution of the coloring problem. Progress in Natural Science, 2004, 14(5): 104-107
  • 6Pan L Q, Carlos M V. Solving multidimensional 0-1 knapsack problem by P systems with input and active membranes. Journal of Parallel and Distributed Computing, 2005, 65 (12): 1578-1584
  • 7Boneh D, Dunworth C, Lipton R J. Breaking DES using a molecular computer//Proeeedings of the 1st DIMACS Workshop on DNA Based Computers. 1995:37-65
  • 8Adleman L M, Rothemund P W K, Roweis S, Winfree E. On applying molecular computation to the data encryption standard//Proceedings of the 2nd Annual Meeting on DNA Computers. 1996:10-12
  • 9Chang W L, Guo M Y, Michael S H. Fast parallel molecular algorithms for DNA-based computation:Factoring integers. IEEE Transactions on Nanobioscience, 2005, 4(2) : 149-163
  • 10Gehani A, LaBean T H, Reif J H. DNA-based cryptography//Proeeedings of the 5th DIMACS Workshop on DNA- Based Computers, MIT, 1999:233

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部