摘要
研究了对合左Q-模范畴的性质.讨论了此范畴的乘积和等子,并给出它们的具体结构;证明了单点集构成的对合左Q-模是此范畴的终对象,且当Q是无零因子对合Quantale时,对合左Q-模范畴有始对象,证明了此范畴不是连通范畴;给出了对合左Q-模范畴的极限结构,同时得到此范畴是完备范畴且有拉回.
Some categorical properties of involutive left Q-modules are discussed. Firstly, the product and equalizer of this category are considered, and their conformations are given. Secondly, it is proved that this category has terminal object which is one-element involutive left Q-modules, and initial object when involutive Quantale Q has no zero divisors. It is also obtained that the category of involutive left Q-modules is not connected. Finally, the structure of limit in the category of involutive left Q-modules is given, and the completeness and pullback of the category of involutive left Q-modules are obtained.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第4期6-10,共5页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11171196
10871121)
关键词
对合左Q-模
乘积
极限
involutive left Q -module
product
limit