期刊文献+

对合左Q-模范畴的性质

Properties on categories of involutive left Q-modules
下载PDF
导出
摘要 研究了对合左Q-模范畴的性质.讨论了此范畴的乘积和等子,并给出它们的具体结构;证明了单点集构成的对合左Q-模是此范畴的终对象,且当Q是无零因子对合Quantale时,对合左Q-模范畴有始对象,证明了此范畴不是连通范畴;给出了对合左Q-模范畴的极限结构,同时得到此范畴是完备范畴且有拉回. Some categorical properties of involutive left Q-modules are discussed. Firstly, the product and equalizer of this category are considered, and their conformations are given. Secondly, it is proved that this category has terminal object which is one-element involutive left Q-modules, and initial object when involutive Quantale Q has no zero divisors. It is also obtained that the category of involutive left Q-modules is not connected. Finally, the structure of limit in the category of involutive left Q-modules is given, and the completeness and pullback of the category of involutive left Q-modules are obtained.
作者 陈晓婷 赵彬
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期6-10,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11171196 10871121)
关键词 对合左Q-模 乘积 极限 involutive left Q -module product limit
  • 相关文献

参考文献10

  • 1Abramsky S, Vicker S. Quantale, observational logic and process semantic [J]. Mathematical Structures, 1993, 3(2) :161-227.
  • 2Solovyov S A. On the category Q-Mod[J].Algebra Universalis, 2008, 58(1):35-58.
  • 3Russo C. Quantale modules, with application to logic and image processing [ D]Italy: University of Salerno, 2007.
  • 4Rosenthal K I. Quantales and their applications[M]. New York: Longman Scientific & Technical, 1990.
  • 5王顺钦,赵彬.Girard quantale的若干性质[J].陕西师范大学学报(自然科学版),2007,35(2):10-13. 被引量:6
  • 6Paseka J. A note on Girard bimodules[J]. International Journal of Theoretical Physics, 2000, 39(3):805-812.
  • 7Hurrilich H, Streeker E. Category theory[M]. Berlin: Heldermann Verlag, 1979.
  • 8Pelletier J W, Rosicky. Simple involutive Quantales[J]. Journal of Algebra, 1997, 195(2):367-386.
  • 9Kruml D. A characterization of spatial Quantales[D]. De- partment of Mathematics, Masaryk University, 1998.
  • 10Mulvey C J, Pelletier J W. A quantisation of the calcu- lus of relations [J]. Category Theory, 1991, 13: 345-360.

二级参考文献9

  • 1王顺钦,赵彬.Prequantale同余及其性质[J].数学进展,2005,34(6):746-752. 被引量:12
  • 2Abramsky S, Vickers S. Quantales, observational logic and process semantics [J]. Mathematical Structures in Computer Science, 1993, 3(2): 161-227.
  • 3Banaschewski B, Mulvey C J. A globalization of the Gelfand duality theorem [J]. Annals of Pure and Applied Logic, 2006, 137(1): 62-103.
  • 4Girard J Y. Linear logic [ J ]. Theoretical Computer Science, 1987, 50(1): 1-102.
  • 5Yetter D. Quantales and noneommutative linear logic[J]. The Journal of Symbolic Logic, 1990,55(1) : 41-64.
  • 6Rosenthal K I. Quantales and their applications [M]. London: Longman Scientific & Technical, 1990.
  • 7Xu Y, Ruan D, Qin K Y, et al. Lattice-valued logic[M]. Heideberg: Spring-Verlag Berlin Heideberg, 2003.
  • 8李永明,李志慧.Quantale与互模拟的进程语义[J].数学学报(中文版),1999,42(2):313-320. 被引量:18
  • 9李永明.非可换线性逻辑及其Quantale语义[J].陕西师范大学学报(自然科学版),2001,29(2):1-5. 被引量:15

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部